These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 2635474)

  • 1. Axial diffusion of retinol in isolated frog rod outer segments following substantial bleaches of visual pigment.
    Sears RC; Kaplan MW
    Vision Res; 1989; 29(11):1485-92. PubMed ID: 2635474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and axial diffusion of retinol in bleached rod outer segments of frogs (Rana pipiens).
    Kaplan MW
    Exp Eye Res; 1985 May; 40(5):721-9. PubMed ID: 3874086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-trans retinol in rod photoreceptor outer segments moves unrestrictedly by passive diffusion.
    Wu Q; Chen C; Koutalos Y
    Biophys J; 2006 Dec; 91(12):4678-89. PubMed ID: 17012326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interphotoreceptor retinoid-binding protein is the physiologically relevant carrier that removes retinol from rod photoreceptor outer segments.
    Wu Q; Blakeley LR; Cornwall MC; Crouch RK; Wiggert BN; Koutalos Y
    Biochemistry; 2007 Jul; 46(29):8669-79. PubMed ID: 17602665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of all-trans retinal to all-trans retinol in the outer segments of frog and mouse rod photoreceptors.
    Chen C; Tsina E; Cornwall MC; Crouch RK; Vijayaraghavan S; Koutalos Y
    Biophys J; 2005 Mar; 88(3):2278-87. PubMed ID: 15626704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of bovine rod outer segment membranes capable of regenerating visual pigment with added 11-cis-Retinol.
    Sack RA
    Methods Enzymol; 1982; 81():506-9. PubMed ID: 7098895
    [No Abstract]   [Full Text] [Related]  

  • 7. Rapid formation of all-trans retinol after bleaching in frog and mouse rod photoreceptor outer segments.
    Chen C; Koutalos Y
    Photochem Photobiol Sci; 2010 Nov; 9(11):1475-9. PubMed ID: 20697621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the rod outer segment birefringence change correlated with metarhodopsin II formation.
    Kaplan MW
    Biophys J; 1982 Jun; 38(3):237-41. PubMed ID: 6980674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral diffusion of rhodopsin in photoreceptor cells measured by fluorescence photobleaching and recovery.
    Wey CL; Cone RA; Edidin MA
    Biophys J; 1981 Feb; 33(2):225-32. PubMed ID: 6971659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two forms of intermediates of frog rhodopsin in rod outer segments.
    Sasaki N; Tokunaga F; Yoshizawa T
    Biochim Biophys Acta; 1983 Jan; 722(1):80-7. PubMed ID: 6600624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interphotoreceptor retinoid-binding protein promotes rhodopsin regeneration in toad photoreceptors.
    Okajima TI; Pepperberg DR; Ripps H; Wiggert B; Chader GJ
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6907-11. PubMed ID: 2118660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanism of rhodopsin regeneration with 11-cis-retinal.
    Cusanovich MA
    Methods Enzymol; 1982; 81():443-7. PubMed ID: 6212745
    [No Abstract]   [Full Text] [Related]  

  • 13. Detection and properties of rapid calcium release from binding sites in isolated rod outer segments upon photoexcitation of rhodopsin.
    Kaupp UB; Junge W
    Methods Enzymol; 1982; 81():569-76. PubMed ID: 7098896
    [No Abstract]   [Full Text] [Related]  

  • 14. Rhodopsin lateral diffusion as a function of rod outer segment disk membrane axial position.
    Kaplan MW
    Biophys J; 1984 Apr; 45(4):851-3. PubMed ID: 6722271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes.
    Thomas DD; Stryer L
    J Mol Biol; 1982 Jan; 154(1):145-57. PubMed ID: 7077659
    [No Abstract]   [Full Text] [Related]  

  • 16. Visual transduction in rod outer segments.
    Takemoto DJ; Cunnick JM
    Cell Signal; 1990; 2(2):99-104. PubMed ID: 2169289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin chromophore exchanges among opsin molecules in the dark.
    Defoe DM; Bok D
    Invest Ophthalmol Vis Sci; 1983 Sep; 24(9):1211-26. PubMed ID: 6224755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sulfhydryl group distribution along the axis of the rod outer segment in the frog].
    Derevianchenko TG; Fedorovich IB; OstrovskiÄ­ MA
    Tsitologiia; 1985 Oct; 27(10):1197-9. PubMed ID: 3878019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin.
    Hicks D; Molday RS
    Exp Eye Res; 1986 Jan; 42(1):55-71. PubMed ID: 2420630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsin phosphorylation suggests biochemical heterogeneities of retinal rod disks.
    Shichi H; Williams TC
    J Supramol Struct; 1979; 12(4):419-24. PubMed ID: 317716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.