These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 2635493)
1. Vestibular contribution to spatial orientation. Evidence of vestibular navigation in an animal model. Matthews BL; Ryu JH; Bockaneck C Acta Otolaryngol Suppl; 1989; 468():149-54. PubMed ID: 2635493 [TBL] [Abstract][Full Text] [Related]
2. Processing idiothetic cues to remember visited locations: hippocampal and vestibular contributions to radial-arm maze performance. Allen K; Potvin O; Thibaudeau G; Doré FY; Goulet S Hippocampus; 2007; 17(8):642-53. PubMed ID: 17554772 [TBL] [Abstract][Full Text] [Related]
3. Vestibular syndrome: a change in internal spatial representation. Borel L; Lopez C; Péruch P; Lacour M Neurophysiol Clin; 2008 Dec; 38(6):375-89. PubMed ID: 19026958 [TBL] [Abstract][Full Text] [Related]
4. Interaction of vestibular, echolocation, and visual modalities guiding flight by the big brown bat, Eptesicus fuscus. Horowitz SS; Cheney CA; Simmons JA J Vestib Res; 2004; 14(1):17-32. PubMed ID: 15156093 [TBL] [Abstract][Full Text] [Related]
5. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required. Gaffan EA; Bannerman DM; Healey AN Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914 [TBL] [Abstract][Full Text] [Related]
6. The contribution of visual and vestibular information to spatial orientation by 6- to 14-month-old infants and adults. Bremner JG; Hatton F; Foster KA; Mason U Dev Sci; 2011 Sep; 14(5):1033-45. PubMed ID: 21884319 [TBL] [Abstract][Full Text] [Related]
7. Visual contributions to human self-motion perception during horizontal body rotation. Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255 [TBL] [Abstract][Full Text] [Related]
8. Direction and distance deficits in path integration after unilateral vestibular loss depend on task complexity. Péruch P; Borel L; Magnan J; Lacour M Brain Res Cogn Brain Res; 2005 Dec; 25(3):862-72. PubMed ID: 16256321 [TBL] [Abstract][Full Text] [Related]
9. Impairment and recovery on a food foraging task following unilateral vestibular deafferentation in rats. Zheng Y; Darlington CL; Smith PF Hippocampus; 2006; 16(4):368-78. PubMed ID: 16358316 [TBL] [Abstract][Full Text] [Related]
10. Long-term deficits on a foraging task after bilateral vestibular deafferentation in rats. Zheng Y; Goddard M; Darlington CL; Smith PF Hippocampus; 2009 May; 19(5):480-6. PubMed ID: 19072773 [TBL] [Abstract][Full Text] [Related]
11. Spatial guidance of choice behavior in the radial-arm maze. Brown MF; Rish PA; VonCulin JE; Edberg JA J Exp Psychol Anim Behav Process; 1993 Jul; 19(3):195-214. PubMed ID: 8340766 [TBL] [Abstract][Full Text] [Related]
12. Augmented prenatal tactile and vestibular stimulation alters postnatal auditory and visual responsiveness in bobwhite quail chicks. Carlsen R; Lickliter R Dev Psychobiol; 1999 Nov; 35(3):215-25. PubMed ID: 10531534 [TBL] [Abstract][Full Text] [Related]
13. Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Paloski WH; Black FO; Reschke MF; Calkins DS; Shupert C Am J Otol; 1993 Jan; 14(1):9-17. PubMed ID: 8424485 [TBL] [Abstract][Full Text] [Related]
14. Fusion of visual and vestibular tilt cues in the perception of visual vertical. Vingerhoets RA; De Vrijer M; Van Gisbergen JA; Medendorp WP J Neurophysiol; 2009 Mar; 101(3):1321-33. PubMed ID: 19118112 [TBL] [Abstract][Full Text] [Related]
15. Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze. Young GS; Choleris E; Kirkland JB Physiol Behav; 2006 Apr; 87(4):794-9. PubMed ID: 16516936 [TBL] [Abstract][Full Text] [Related]
16. Spatial separation of visual and vestibular processing in the human hippocampal formation. Hüfner K; Strupp M; Smith P; Brandt T; Jahn K Ann N Y Acad Sci; 2011 Sep; 1233():177-86. PubMed ID: 21950991 [TBL] [Abstract][Full Text] [Related]
18. Visuo-vestibular interaction: predicting the position of a visual target during passive body rotation. Mackrous I; Simoneau M Neuroscience; 2011 Nov; 195():45-53. PubMed ID: 21839149 [TBL] [Abstract][Full Text] [Related]
19. Effects of body orientation and rotation axis on pitch visual-vestibular interaction. Clément G; Wood SJ; Lathan CE; Peterka RJ; Reschke MF J Vestib Res; 1999; 9(1):1-11. PubMed ID: 10334011 [TBL] [Abstract][Full Text] [Related]