These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 26355510)

  • 1. Evolution and Controllability of Cancer Networks: A Boolean Perspective.
    Srihari S; Raman V; Leong HW; Ragan MA
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):83-94. PubMed ID: 26355510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.
    da Rocha EL; Ung CY; McGehee CD; Correia C; Li H
    Nucleic Acids Res; 2016 Jun; 44(10):e100. PubMed ID: 26975659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State feedback control design for Boolean networks.
    Liu R; Qian C; Liu S; Jin YF
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):70. PubMed ID: 27586140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growing seed genes from time series data and thresholded Boolean networks with perturbation.
    Higa CH; Andrade TP; Hashimoto RF
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):37-49. PubMed ID: 23702542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene Network Rewiring to Study Melanoma Stage Progression and Elements Essential for Driving Melanoma.
    Kaushik A; Bhatia Y; Ali S; Gupta D
    PLoS One; 2015; 10(11):e0142443. PubMed ID: 26558755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential Co-Expression Analyses Allow the Identification of Critical Signalling Pathways Altered during Tumour Transformation and Progression.
    Savino A; Provero P; Poli V
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.
    Park I; Lee KH; Lee D
    Bioinformatics; 2010 Jun; 26(12):1506-12. PubMed ID: 20410052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fault detection and therapeutic intervention in gene regulatory networks using SAT solvers.
    Deshpande A; Layek RK
    Biosystems; 2019 May; 179():55-62. PubMed ID: 30831179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal Reasoning on Boolean Control Networks Based on Abduction: Theory and Application to Cancer Drug Discovery.
    Biane C; Delaplace F
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1574-1585. PubMed ID: 30582550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding genomic alterations in cancer genomes using an integrative network approach.
    Wang E
    Cancer Lett; 2013 Nov; 340(2):261-9. PubMed ID: 23266571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical controllability in proteome-wide protein interaction network integrating transcriptome.
    Ishitsuka M; Akutsu T; Nacher JC
    Sci Rep; 2016 Apr; 6():23541. PubMed ID: 27040162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer.
    Liu X; Wang J; Chen L
    Cancer Lett; 2013 Nov; 340(2):270-6. PubMed ID: 23153794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting a few functionally reproducible biomarkers to build robust subnetwork-based classifiers for the diagnosis of cancer.
    Zhang L; Li S; Hao C; Hong G; Zou J; Zhang Y; Li P; Guo Z
    Gene; 2013 Sep; 526(2):232-8. PubMed ID: 23707927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of pairwise gene interaction using threshold logic.
    Gowda T; Vrudhula S; Kim S
    Ann N Y Acad Sci; 2009 Mar; 1158():276-86. PubMed ID: 19348649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the robustness of update schedules in Boolean networks.
    Aracena J; Goles E; Moreira A; Salinas L
    Biosystems; 2009 Jul; 97(1):1-8. PubMed ID: 19505631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of microRNA-regulated protein interaction pathways in Arabidopsis using machine learning algorithms.
    Kurubanjerdjit N; Huang CH; Lee YL; Tsai JJ; Ng KL
    Comput Biol Med; 2013 Nov; 43(11):1645-52. PubMed ID: 24209909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach.
    Ruz GA; Goles E; Montalva M; Fogel GB
    Biosystems; 2014 Jan; 115():23-32. PubMed ID: 24212100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Varying Differential Network Analysis for Revealing Network Rewiring over Cancer Progression.
    Xu T; Ou-Yang L; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1632-1642. PubMed ID: 31647444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An information theoretic approach to constructing robust Boolean gene regulatory networks.
    Vasić B; Ravanmehr V; Krishnan AR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):52-65. PubMed ID: 21464507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.