These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 26355515)

  • 1. Detecting Differentially Coexpressed Genes from Labeled Expression Data: A Brief Review.
    Kayano M; Shiga M; Mamitsuka H
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):154-67. PubMed ID: 26355515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules.
    Tesson BM; Breitling R; Jansen RC
    BMC Bioinformatics; 2010 Oct; 11():497. PubMed ID: 20925918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.
    Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S
    BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CODC: a Copula-based model to identify differential coexpression.
    Ray S; Lall S; Bandyopadhyay S
    NPJ Syst Biol Appl; 2020 Jun; 6(1):20. PubMed ID: 32561750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network.
    Jiang X; Zhang H; Quan X
    Biomed Res Int; 2016; 2016():3962761. PubMed ID: 28042568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Probabilistic Interaction Modeling for Multiple Gene Expression Replicates.
    Patton KL; John DJ; Norris JL; Lewis DR; Muday GK
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(2):336-46. PubMed ID: 26355781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach.
    Ray S; Maulik U
    Sci Rep; 2017 Mar; 7(1):86. PubMed ID: 28273892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of gene regulatory networks with variable time delay from time-series microarray data.
    ElBakry O; Ahmad MO; Swamy MN
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):671-87. PubMed ID: 24091400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting the Strongest Signals from Omics Data: Differentially Expressed Pathways and Beyond.
    Glazko G; Rahmatallah Y; Zybailov B; Emmert-Streib F
    Methods Mol Biol; 2017; 1613():125-159. PubMed ID: 28849561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ranking analysis for identifying differentially expressed genes.
    Qi Y; Sun H; Sun Q; Pan L
    Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subspace differential coexpression analysis: problem definition and a general approach.
    Fang G; Kuang R; Pandey G; Steinbach M; Myers CL; Kumar V
    Pac Symp Biocomput; 2010; ():145-56. PubMed ID: 19908367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Maximum A Posteriori Probability and Time-Varying Approach for Inferring Gene Regulatory Networks from Time Course Gene Microarray Data.
    Chan SC; Zhang L; Wu HC; Tsui KM
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):123-35. PubMed ID: 26357083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PathGen: a transitive gene pathway generator.
    Clement K; Gustafson N; Berbert A; Carroll H; Merris C; Olsen A; Clement M; Snell Q; Allen J; Roper RJ
    Bioinformatics; 2010 Feb; 26(3):423-5. PubMed ID: 19965882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays.
    Barrera L; Benner C; Tao YC; Winzeler E; Zhou Y
    BMC Bioinformatics; 2004 Apr; 5():42. PubMed ID: 15099405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and microarrays.
    Dopazo J; Al-Shahrour F
    Methods Mol Biol; 2008; 453():245-55. PubMed ID: 18712307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene association analysis: a survey of frequent pattern mining from gene expression data.
    Alves R; Rodriguez-Baena DS; Aguilar-Ruiz JS
    Brief Bioinform; 2010 Mar; 11(2):210-24. PubMed ID: 19815645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smoothing gene expression data with network information improves consistency of regulated genes.
    Dørum G; Snipen L; Solheim M; Saebo S
    Stat Appl Genet Mol Biol; 2011 Aug; 10(1):. PubMed ID: 23089828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale binarization of gene expression data for reconstructing Boolean networks.
    Hopfensitz M; Mussel C; Wawra C; Maucher M; Kuhl M; Neumann H; Kestler HA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):487-98. PubMed ID: 21464514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A non-transformation method for identifying differentially expressed genes from cDNA microarrays.
    Zhang JG; Yin ZJ; Zhang Q
    Yi Chuan Xue Bao; 2006 Jan; 33(1):80-8. PubMed ID: 16450591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.