These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26355518)

  • 41. Inferring coregulation of transcription factors and microRNAs in breast cancer.
    Wu JH; Sun YJ; Hsieh PH; Shieh GS
    Gene; 2013 Apr; 518(1):139-44. PubMed ID: 23246694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel method to identify pre-microRNA in various species knowledge base on various species.
    Zhao T; Zhang N; Zhang Y; Ren J; Xu P; Liu Z; Cheng L; Hu Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):30. PubMed ID: 29297389
    [TBL] [Abstract][Full Text] [Related]  

  • 43. miRSel: automated extraction of associations between microRNAs and genes from the biomedical literature.
    Naeem H; Küffner R; Csaba G; Zimmer R
    BMC Bioinformatics; 2010 Mar; 11():135. PubMed ID: 20233441
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MicroRNA targets in Drosophila.
    Enright AJ; John B; Gaul U; Tuschl T; Sander C; Marks DS
    Genome Biol; 2003; 5(1):R1. PubMed ID: 14709173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational identification of microRNAs and their targets.
    Yoon S; De Micheli G
    Birth Defects Res C Embryo Today; 2006 Jun; 78(2):118-28. PubMed ID: 16847881
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identifying mammalian MicroRNA targets based on supervised distance metric learning.
    Liu H; Zhou S; Guan J
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):427-35. PubMed ID: 23192603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A bioinformatics-based update on microRNAs and their targets in rainbow trout (Oncorhynchus mykiss).
    Yang L; He S
    Gene; 2014 Jan; 533(1):261-9. PubMed ID: 24064144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New syntax to describe local continuous structure-sequence information for recognizing new pre-miRNAs.
    Wang M; Song X; Han P; Li W; Jiang B
    J Theor Biol; 2010 May; 264(2):578-84. PubMed ID: 20202471
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Benchmark comparison of ab initio microRNA identification methods and software.
    Hu LL; Huang Y; Wang QC; Zou Q; Jiang Y
    Genet Mol Res; 2012 Dec; 11(4):4525-38. PubMed ID: 23096922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of microRNA-target interactions by a target structure based hybridization model.
    Long D; Chan CY; Ding Y
    Pac Symp Biocomput; 2008; ():64-74. PubMed ID: 18232104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. miRgo: integrating various off-the-shelf tools for identification of microRNA-target interactions by heterogeneous features and a novel evaluation indicator.
    Chu YW; Chang KP; Chen CW; Liang YT; Soh ZT; Hsieh LC
    Sci Rep; 2020 Jan; 10(1):1466. PubMed ID: 32001758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Delineating the impact of machine learning elements in pre-microRNA detection.
    Saçar Demirci MD; Allmer J
    PeerJ; 2017; 5():e3131. PubMed ID: 28367373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. iMiRNA-SSF: Improving the Identification of MicroRNA Precursors by Combining Negative Sets with Different Distributions.
    Chen J; Wang X; Liu B
    Sci Rep; 2016 Jan; 6():19062. PubMed ID: 26753561
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GeneAI 3.0: powerful, novel, generalized hybrid and ensemble deep learning frameworks for miRNA species classification of stationary patterns from nucleotides.
    Singh J; Khanna NN; Rout RK; Singh N; Laird JR; Singh IM; Kalra MK; Mantella LE; Johri AM; Isenovic ER; Fouda MM; Saba L; Fatemi M; Suri JS
    Sci Rep; 2024 Mar; 14(1):7154. PubMed ID: 38531923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A First Computational Frame for Recognizing Heparin-Binding Protein.
    Zhu W; Yuan SS; Li J; Huang CB; Lin H; Liao B
    Diagnostics (Basel); 2023 Jul; 13(14):. PubMed ID: 37510209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A GHKNN model based on the physicochemical property extraction method to identify SNARE proteins.
    Gu X; Ding Y; Xiao P; He T
    Front Genet; 2022; 13():935717. PubMed ID: 36506312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. iPromoter-Seqvec: identifying promoters using bidirectional long short-term memory and sequence-embedded features.
    Nguyen-Vo TH; Trinh QH; Nguyen L; Nguyen-Hoang PU; Rahardja S; Nguyen BP
    BMC Genomics; 2022 Oct; 23(Suppl 5):681. PubMed ID: 36192696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of plant vacuole proteins by exploiting deep representation learning features.
    Jiao S; Zou Q
    Comput Struct Biotechnol J; 2022; 20():2921-2927. PubMed ID: 35765653
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New 3D graphical representation for RNA structure analysis and its application in the pre-miRNA identification of plants.
    Fu X; Liao B; Zhu W; Cai L
    RSC Adv; 2018 Aug; 8(54):30833-30841. PubMed ID: 35548744
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNAPred_Prot: Identification of DNA-Binding Proteins Using Composition- and Position-Based Features.
    Barukab O; Khan YD; Khan SA; Chou KC
    Appl Bionics Biomech; 2022; 2022():5483115. PubMed ID: 35465187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.