BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26355561)

  • 1. Scavenging 4-Oxo-2-nonenal.
    Amarnath V; Amarnath K
    Chem Res Toxicol; 2015 Oct; 28(10):1888-90. PubMed ID: 26355561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridoxamine: an extremely potent scavenger of 1,4-dicarbonyls.
    Amarnath V; Amarnath K; Amarnath K; Davies S; Roberts LJ
    Chem Res Toxicol; 2004 Mar; 17(3):410-5. PubMed ID: 15025512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyridoxamine analogues scavenge lipid-derived gamma-ketoaldehydes and protect against H2O2-mediated cytotoxicity.
    Davies SS; Brantley EJ; Voziyan PA; Amarnath V; Zagol-Ikapitte I; Boutaud O; Hudson BG; Oates JA; Roberts LJ
    Biochemistry; 2006 Dec; 45(51):15756-67. PubMed ID: 17176098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolevuglandins as mediators of disease and the development of dicarbonyl scavengers as pharmaceutical interventions.
    Davies SS; May-Zhang LS; Boutaud O; Amarnath V; Kirabo A; Harrison DG
    Pharmacol Ther; 2020 Jan; 205():107418. PubMed ID: 31629006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model studies on protein side chain modification by 4-oxo-2-nonenal.
    Zhang WH; Liu J; Xu G; Yuan Q; Sayre LM
    Chem Res Toxicol; 2003 Apr; 16(4):512-23. PubMed ID: 12703968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition effect of pyridoxamine on lipid hydroperoxide-derived modifications to human serum albumin.
    Lee SH; Matsunaga A; Oe T
    PLoS One; 2018; 13(4):e0196050. PubMed ID: 29672562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass spectrometric evidence of malonaldehyde and 4-hydroxynonenal adductions to radical-scavenging soy peptides.
    Zhao J; Chen J; Zhu H; Xiong YL
    J Agric Food Chem; 2012 Sep; 60(38):9727-36. PubMed ID: 22946674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells.
    Sun R; Fu L; Liu K; Tian C; Yang Y; Tallman KA; Porter NA; Liebler DC; Yang J
    Mol Cell Proteomics; 2017 Oct; 16(10):1789-1800. PubMed ID: 28814509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lived 4-oxo-2-enal-derived apparent lysine michael adducts are actually the isomeric 4-ketoamides.
    Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Feb; 20(2):165-70. PubMed ID: 17305402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.
    Voziyan PA; Metz TO; Baynes JW; Hudson BG
    J Biol Chem; 2002 Feb; 277(5):3397-403. PubMed ID: 11729198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural elucidation of a 2:2 4-ketoaldehyde-amine adduct as a model for lysine-directed cross-linking of proteins by 4-ketoaldehydes.
    Xu G; Sayre LM
    Chem Res Toxicol; 1999 Sep; 12(9):862-8. PubMed ID: 10490509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel lipid hydroperoxide-derived cyclic covalent modification to histone H4.
    Oe T; Arora JS; Lee SH; Blair IA
    J Biol Chem; 2003 Oct; 278(43):42098-105. PubMed ID: 12930824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-Hydroxy-2-nonenal (4-HNE) and Its Lipation Product 2-Pentylpyrrole Lysine (2-PPL) in Peanuts.
    Globisch M; Kaden D; Henle T
    J Agric Food Chem; 2015 Jun; 63(21):5273-81. PubMed ID: 25945920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of advanced reaction products originating from the initial 4-oxo-2-nonenal-cysteine Michael adducts.
    Shimozu Y; Shibata T; Ojika M; Uchida K
    Chem Res Toxicol; 2009 May; 22(5):957-64. PubMed ID: 19368367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal.
    Lin D; Lee HG; Liu Q; Perry G; Smith MA; Sayre LM
    Chem Res Toxicol; 2005 Aug; 18(8):1219-31. PubMed ID: 16097795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of protein function by isoketals and levuglandins.
    Davies SS
    Subcell Biochem; 2008; 49():49-70. PubMed ID: 18751907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectroscopic characterization of protein modification by 4-hydroxy-2-(E)-nonenal and 4-oxo-2-(E)-nonenal.
    Liu Z; Minkler PE; Sayre LM
    Chem Res Toxicol; 2003 Jul; 16(7):901-11. PubMed ID: 12870893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrrole formation from 4-hydroxynonenal and primary amines.
    Sayre LM; Arora PK; Iyer RS; Salomon RG
    Chem Res Toxicol; 1993; 6(1):19-22. PubMed ID: 8448343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(τ)-(3-propanal)histidine as the major adduct.
    Maeshima T; Honda K; Chikazawa M; Shibata T; Kawai Y; Akagawa M; Uchida K
    Chem Res Toxicol; 2012 Jul; 25(7):1384-92. PubMed ID: 22716039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histidine and lysine as targets of oxidative modification.
    Uchida K
    Amino Acids; 2003 Dec; 25(3-4):249-57. PubMed ID: 14661088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.