These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26355568)

  • 41. A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA.
    Huang Y; Shi Y; Yang HY; Ai Y
    Nanoscale; 2015 Feb; 7(6):2245-9. PubMed ID: 25567642
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of a Micro Free-Flow Electrophoresis 3D Printed Lab-on-a-Chip for Micro-Nanoparticles Analysis.
    Barbaresco F; Cocuzza M; Pirri CF; Marasso SL
    Nanomaterials (Basel); 2020 Jun; 10(7):. PubMed ID: 32629794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Capillary fractionation of HPLC substrates by a microfluidic droplet generator for high throughput analysis.
    Hamed S; Shay B; Basu AS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8396-9. PubMed ID: 22256295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells.
    Bidarra SJ; Barrias CC; Barbosa MA; Soares R; Amédée J; Granja PL
    Stem Cell Res; 2011 Nov; 7(3):186-97. PubMed ID: 21907162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High throughput cell cycle analysis using microfluidic image cytometry (μFIC).
    Yoo HJ; Park J; Yoon TH
    Cytometry A; 2013 Apr; 83(4):356-62. PubMed ID: 23418122
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic engineering of mesenchymal stem cells by non-viral gene delivery.
    Wang W; Xu X; Li Z; Lendlein A; Ma N
    Clin Hemorheol Microcirc; 2014; 58(1):19-48. PubMed ID: 25227201
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic: an innovative tool for efficient cell sorting.
    Autebert J; Coudert B; Bidard FC; Pierga JY; Descroix S; Malaquin L; Viovy JL
    Methods; 2012 Jul; 57(3):297-307. PubMed ID: 22796377
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.
    Hood RR; DeVoe DL
    Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation.
    Freeman FE; Haugh MG; McNamara LM
    Tissue Eng Part A; 2015 Apr; 21(7-8):1320-32. PubMed ID: 25588588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels.
    Zhang H; Liu L; Fu X; Zhu Z
    Biosens Bioelectron; 2013 Apr; 42():23-30. PubMed ID: 23202325
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipid nanoparticle purification by spin centrifugation-dialysis (SCD): a facile and high-throughput approach for small scale preparation of siRNA-lipid complexes.
    Mihaila R; Chang S; Wei AT; Hu ZY; Ruhela D; Shadel TR; Duenwald S; Payson E; Cunningham JJ; Kuklin N; Mathre DJ
    Int J Pharm; 2011 Nov; 420(1):118-21. PubMed ID: 21893179
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel.
    Zhang J; Yan S; Sluyter R; Li W; Alici G; Nguyen NT
    Sci Rep; 2014 Mar; 4():4527. PubMed ID: 24681628
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cross-linked iron oxide nanoparticles for therapeutic engineering and in vivo monitoring of mesenchymal stem cells in cerebral ischemia model.
    Park JW; Ku SH; Moon HH; Lee M; Choi D; Yang J; Huh YM; Jeong JH; Park TG; Mok H; Kim SH
    Macromol Biosci; 2014 Mar; 14(3):380-9. PubMed ID: 24634264
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system.
    Zheng C; Zhao L; Chen G; Zhou Y; Pang Y; Huang Y
    Anal Chem; 2012 Feb; 84(4):2088-93. PubMed ID: 22263607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nano-engineered living bacterial motors for active microfluidic mixing.
    Al-Fandi M; Jaradat MA; Fandi K; Beech JP; Tegenfeldt JO; Yih TC
    IET Nanobiotechnol; 2010 Sep; 4(3):61-71. PubMed ID: 20726672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-throughput synchronization of mammalian cell cultures by spiral microfluidics.
    Lee WC; Bhagat AA; Lim CT
    Methods Mol Biol; 2014; 1104():3-13. PubMed ID: 24297405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Continuous scalable blood filtration device using inertial microfluidics.
    Mach AJ; Di Carlo D
    Biotechnol Bioeng; 2010 Oct; 107(2):302-11. PubMed ID: 20589838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfabricated high-throughput electronic particle detector.
    Wood DK; Requa MV; Cleland AN
    Rev Sci Instrum; 2007 Oct; 78(10):104301. PubMed ID: 17979441
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-throughput microfluidic imaging flow cytometry.
    Stavrakis S; Holzner G; Choo J; deMello A
    Curr Opin Biotechnol; 2019 Feb; 55():36-43. PubMed ID: 30118968
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combinatorial mixing of microfluidic streams.
    Neils C; Tyree Z; Finlayson B; Folch A
    Lab Chip; 2004 Aug; 4(4):342-50. PubMed ID: 15269802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.