BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 26355654)

  • 1. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
    Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z
    Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties.
    Jin Z; Wu R; Shen J; Yang X; Shen M; Xu W; Huang R; Zhang L; Yang G; Gao C; Gou Z; Xu S
    J Mech Behav Biomed Mater; 2018 Dec; 88():140-149. PubMed ID: 30170193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of pore-wall in direct ink writing wollastonite scaffolds favorable for tuning biodegradation and mechanical stability and enhancing osteogenic capability.
    Ke X; Qiu J; Wang X; Yang X; Shen J; Ye S; Yang G; Xu S; Bi Q; Gou Z; Jia X; Zhang L
    FASEB J; 2020 Apr; 34(4):5673-5687. PubMed ID: 32115776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration.
    Fu Q; Saiz E; Tomsia AP
    Acta Biomater; 2011 Oct; 7(10):3547-54. PubMed ID: 21745606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR; Ehrenfried LM; Hench LL
    Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M
    Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
    Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B
    J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.
    Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L
    Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.
    Chang CH; Lin CY; Liu FH; Chen MH; Lin CP; Ho HN; Liao YS
    PLoS One; 2015; 10(11):e0143713. PubMed ID: 26618362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds.
    Thavornyutikarn B; Tesavibul P; Sitthiseripratip K; Chatarapanich N; Feltis B; Wright PFA; Turney TW
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1281-1288. PubMed ID: 28415417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robocasting of Bioactive SiO
    Baino F; Barberi J; Fiume E; Orlygsson G; Massera J; Verné E
    J Healthc Eng; 2019; 2019():5153136. PubMed ID: 31098008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.