BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 26355767)

  • 1. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER).
    Reier T; Pawolek Z; Cherevko S; Bruns M; Jones T; Teschner D; Selve S; Bergmann A; Nong HN; Schlögl R; Mayrhofer KJ; Strasser P
    J Am Chem Soc; 2015 Oct; 137(40):13031-40. PubMed ID: 26355767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Analysis of the Unusual Stability of an IrNbO
    Spöri C; Falling LJ; Kroschel M; Brand C; Bonakdarpour A; Kühl S; Berger D; Gliech M; Jones TE; Wilkinson DP; Strasser P
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3748-3761. PubMed ID: 33442973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts.
    Ying Y; Godínez Salomón JF; Lartundo-Rojas L; Moreno A; Meyer R; Damin CA; Rhodes CP
    Nanoscale Adv; 2021 Apr; 3(7):1976-1996. PubMed ID: 36133093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.
    Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P
    J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and Stable Evolution of Oxygen Using Pulse-Electrodeposited Ir/Ni Oxide Catalyst in Fe-Spiked KOH Electrolyte.
    Gong L; Ren D; Deng Y; Yeo BS
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):15985-90. PubMed ID: 27323252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Investigation of Iridium-Based Bimetallic Thin Film Catalysts for the Oxygen Evolution Reaction in Acidic Media.
    Strickler AL; Flores RA; King LA; Nørskov JK; Bajdich M; Jaramillo TF
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34059-34066. PubMed ID: 31442022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxide-supported IrNiO(x) core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting.
    Nong HN; Oh HS; Reier T; Willinger E; Willinger MG; Petkov V; Teschner D; Strasser P
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):2975-9. PubMed ID: 25611732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.
    Louie MW; Bell AT
    J Am Chem Soc; 2013 Aug; 135(33):12329-37. PubMed ID: 23859025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution.
    Guo H; Fang Z; Li H; Fernandez D; Henkelman G; Humphrey SM; Yu G
    ACS Nano; 2019 Nov; 13(11):13225-13234. PubMed ID: 31668069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Dimensional Ir-Based Catalysts for Acidic OER.
    Yu H; Ke J; Shao Q
    Small; 2023 Nov; 19(48):e2304307. PubMed ID: 37534380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction.
    Li L; Wang P; Shao Q; Huang X
    Adv Mater; 2021 Dec; 33(50):e2004243. PubMed ID: 33749035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Searching for active binary rutile oxide catalyst for water splitting from first principles.
    Chen D; Fang YH; Liu ZP
    Phys Chem Chem Phys; 2012 Dec; 14(48):16612-7. PubMed ID: 22941355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media.
    Gao J; Tao H; Liu B
    Adv Mater; 2021 Aug; 33(31):e2003786. PubMed ID: 34169587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of Surface IrO
    Escudero-Escribano M; Pedersen AF; Paoli EA; Frydendal R; Friebel D; Malacrida P; Rossmeisl J; Stephens IEL; Chorkendorff I
    J Phys Chem B; 2018 Jan; 122(2):947-955. PubMed ID: 29045788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment.
    An L; Wei C; Lu M; Liu H; Chen Y; Scherer GG; Fisher AC; Xi P; Xu ZJ; Yan CH
    Adv Mater; 2021 May; 33(20):e2006328. PubMed ID: 33768614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.