BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26355992)

  • 1. A Fluorescent, Reagentless Biosensor for ATP, Based on Malonyl-Coenzyme A Synthetase.
    Vancraenenbroeck R; Webb MR
    ACS Chem Biol; 2015 Nov; 10(11):2650-7. PubMed ID: 26355992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a range of fluorescent reagentless biosensors for ATP, based on malonyl-coenzyme A synthetase.
    Vancraenenbroeck R; Kunzelmann S; Webb MR
    PLoS One; 2017; 12(6):e0179547. PubMed ID: 28636641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-guided expansion of the substrate range of methylmalonyl coenzyme A synthetase (MatB) of Rhodopseudomonas palustris.
    Crosby HA; Rank KC; Rayment I; Escalante-Semerena JC
    Appl Environ Microbiol; 2012 Sep; 78(18):6619-29. PubMed ID: 22773649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescent, reagentless biosensor for ADP based on tetramethylrhodamine-labeled ParM.
    Kunzelmann S; Webb MR
    ACS Chem Biol; 2010 Apr; 5(4):415-25. PubMed ID: 20158267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetically encoded fluorescent reporter of ATP:ADP ratio.
    Berg J; Hung YP; Yellen G
    Nat Methods; 2009 Feb; 6(2):161-6. PubMed ID: 19122669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective dual sensing of ATP and ADP using fluorescent ribonucleopeptide sensors.
    Nakano S; Shimizu M; Dinh H; Morii T
    Chem Commun (Camb); 2019 Jan; 55(11):1611-1614. PubMed ID: 30657140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modular strategy for tailoring fluorescent biosensors from ribonucleopeptide complexes.
    Hagihara M; Fukuda M; Hasegawa T; Morii T
    J Am Chem Soc; 2006 Oct; 128(39):12932-40. PubMed ID: 17002390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that two covalent intermediates, phosphoryl and malonyl enzymes, are formed during malonyl-coenzyme A synthetase catalysis.
    Kim YS; Lee JK
    J Biol Chem; 1986 Dec; 261(35):16295-7. PubMed ID: 3097006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues essential for a two-step reaction by malonyl-CoA synthetase from Rhizobium trifolii.
    An JH; Lee GY; Jung JW; Lee W; Kim YS
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):159-66. PubMed ID: 10548546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biosensor for fluorescent determination of ADP with high time resolution.
    Kunzelmann S; Webb MR
    J Biol Chem; 2009 Nov; 284(48):33130-8. PubMed ID: 19801632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli succinyl coenzyme A synthetase. Inhibition of ATP-stimulated succinate----succinyl coenzyme A exchange at low succinyl coenzyme A concentrations by an ADP trap.
    Nishimura JS; Mitchell T
    J Biol Chem; 1984 Feb; 259(4):2144-8. PubMed ID: 6365903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetics of malonyl-CoA synthetase from Bradyrhizobium japonicum and evidence for malonyl-AMP formation in the reaction.
    Kim YS; Kang SW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):327-33. PubMed ID: 8297339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F; Sun C; Lv X; You J
    Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification.
    Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C
    Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The active site and substrates binding mode of malonyl-CoA synthetase determined by transferred nuclear Overhauser effect spectroscopy, site-directed mutagenesis, and comparative modeling studies.
    Jung JW; An JH; Na KB; Kim YS; Lee W
    Protein Sci; 2000 Jul; 9(7):1294-303. PubMed ID: 10933494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing of adenosine-5'-triphosphate anion in aqueous solutions and mitochondria by a fluorescent 3-hydroxyflavone dye.
    Yushchenko DA; Vadzyuk OB; Kosterin SO; Duportail G; Mély Y; Pivovarenko VG
    Anal Biochem; 2007 Oct; 369(2):218-25. PubMed ID: 17568555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malonyl coenzyme A synthetase. Purification and properties.
    Kim YS; Bang SK
    J Biol Chem; 1985 Apr; 260(8):5098-104. PubMed ID: 3921541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP.
    Wang W; Li X; Tang K; Song Z; Luo X
    J Mater Chem B; 2020 Jul; 8(27):5945-5951. PubMed ID: 32667018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro precursor-directed synthesis of polyketide analogues with coenzyme a regeneration for the development of antiangiogenic agents.
    Kim MI; Kwon SJ; Dordick JS
    Org Lett; 2009 Sep; 11(17):3806-9. PubMed ID: 19653678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioflavin T behaves as an efficient fluorescent ligand for label-free ATP aptasensor.
    Wang H; Peng P; Liu S; Li T
    Anal Bioanal Chem; 2016 Nov; 408(28):7927-7934. PubMed ID: 27682839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.