BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26355992)

  • 21. ATP selective acridone based fluorescent probes for monitoring of metabolic events.
    Kaur J; Singh P
    Chem Commun (Camb); 2011 Apr; 47(15):4472-4. PubMed ID: 21380453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BTeam, a Novel BRET-based Biosensor for the Accurate Quantification of ATP Concentration within Living Cells.
    Yoshida T; Kakizuka A; Imamura H
    Sci Rep; 2016 Dec; 6():39618. PubMed ID: 28000761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Ga(3+)self-assembled fluorescent probe for ATP imaging in vivo.
    Xiao L; Sun S; Pei Z; Pei Y; Pang Y; Xu Y
    Biosens Bioelectron; 2015 Mar; 65():166-70. PubMed ID: 25461153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free and rapid detection of ATP based on structure switching of aptamers.
    Ji D; Wang H; Ge J; Zhang L; Li J; Bai D; Chen J; Li Z
    Anal Biochem; 2017 Jun; 526():22-28. PubMed ID: 28315316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP detection using a label-free DNA aptamer and a cationic tetrahedralfluorene.
    Wang Y; Liu B
    Analyst; 2008 Nov; 133(11):1593-8. PubMed ID: 18936838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proximity-enabled bidirectional enzymatic repairing amplification for ultrasensitive fluorescence sensing of adenosine triphosphate.
    Li S; Liu S; Wang J; Zhao Y; Zhang R; Qu X; Wang Y; Huang J; Yu J
    Anal Chim Acta; 2020 Apr; 1104():156-163. PubMed ID: 32106947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetite nanoparticle-induced fluorescence quenching of adenosine triphosphate-BODIPY Conjugates: application to adenosine triphosphate and pyrophosphate sensing.
    Yu CJ; Wu SM; Tseng WL
    Anal Chem; 2013 Sep; 85(18):8559-65. PubMed ID: 23919280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a Reagentless Biosensor for Inorganic Phosphate, Applicable over a Wide Concentration Range.
    Solscheid C; Kunzelmann S; Davis CT; Hunter JL; Nofer A; Webb MR
    Biochemistry; 2015 Aug; 54(32):5054-62. PubMed ID: 26199994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence.
    Wang K; Liao J; Yang X; Zhao M; Chen M; Yao W; Tan W; Lan X
    Biosens Bioelectron; 2015 Jan; 63():172-177. PubMed ID: 25086329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical modification of Pseudomonas fluorescens malonyl-CoA synthetase by diethylpyrocarbonate: kinetic evidence for an essential histidyl residue on alpha subunit.
    Kim YS; Kim YI; Bang SK
    J Protein Chem; 1991 Aug; 10(4):407-13. PubMed ID: 1781886
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Palmitoyl coenzyme A synthetase activation by uncomplexed ATP.
    Rose G; Bar-Tana J; Shapiro B
    Biochim Biophys Acta; 1979 Apr; 573(1):126-35. PubMed ID: 454634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors.
    Nakano S; Fukuda M; Tamura T; Sakaguchi R; Nakata E; Morii T
    J Am Chem Soc; 2013 Mar; 135(9):3465-73. PubMed ID: 23373863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear fluorescence response driven by ATP-induced self-assembly of guanidinium-tethered tetraphenylethene.
    Noguchi T; Shiraki T; Dawn A; Tsuchiya Y; Lien le TN; Yamamoto T; Shinkai S
    Chem Commun (Camb); 2012 Aug; 48(65):8090-2. PubMed ID: 22773087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective detection of ATP and ADP in aqueous solution by using a fluorescent zinc receptor.
    Strianese M; Milione S; Maranzana A; Grassi A; Pellecchia C
    Chem Commun (Camb); 2012 Dec; 48(93):11419-21. PubMed ID: 23086379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cholic acid-based fluorescent chemosenor for the detection of ATP.
    Wang H; Chan WH
    Org Biomol Chem; 2008 Jan; 6(1):162-8. PubMed ID: 18075662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP.
    Trull KJ; Miller P; Tat K; Varney SA; Conley JM; Tantama M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Major Enzymes Involved in the Synthesis of Diadenosine Tetraphosphate and/or Adenosine Tetraphosphate in Myxococcus xanthus.
    Kimura Y; Tanaka C; Oka M
    Curr Microbiol; 2018 Jul; 75(7):811-817. PubMed ID: 29468302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A ligation-triggered highly sensitive fluorescent assay of adenosine triphosphate based on graphene oxide.
    Zhu W; Zhao Z; Li Z; Jiang J; Shen G; Yu R
    Analyst; 2012 Dec; 137(23):5506-9. PubMed ID: 23082315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate-induced fit of the ATP binding site of cytidine monophosphate kinase from Escherichia coli: time-resolved fluorescence of 3'-anthraniloyl-2'-deoxy-ADP and molecular modeling.
    Li de La Sierra IM; Gallay J; Vincent M; Bertrand T; Briozzo P; Bârzu O; Gilles AM
    Biochemistry; 2000 Dec; 39(51):15870-8. PubMed ID: 11123913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanomolar detection of adenosine triphosphate (ATP) using a nanostructured fluorescent chemosensing ensemble.
    Huang LX; Guo Q; Chen Y; Verwilst P; Son S; Wu JB; Cao QY; Kim JS
    Chem Commun (Camb); 2019 Dec; 55(94):14135-14138. PubMed ID: 31687696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.