These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Shen HB; Yong XY; Chen YL; Liao ZH; Si RW; Zhou J; Wang SY; Yong YC; OuYang PK; Zheng T Bioresour Technol; 2014 Sep; 167():490-4. PubMed ID: 25011080 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Yong XY; Shi DY; Chen YL; Feng J; Xu L; Zhou J; Wang SY; Yong YC; Sun YM; OuYang PK; Zheng T Bioresour Technol; 2014; 152():220-4. PubMed ID: 24292201 [TBL] [Abstract][Full Text] [Related]
4. An integrated aerobic-anaerobic strategy for performance enhancement of Pseudomonas aeruginosa-inoculated microbial fuel cell. Yong XY; Yan ZY; Shen HB; Zhou J; Wu XY; Zhang LJ; Zheng T; Jiang M; Wei P; Jia HH; Yong YC Bioresour Technol; 2017 Oct; 241():1191-1196. PubMed ID: 28647320 [TBL] [Abstract][Full Text] [Related]
5. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Déziel E; Lépine F; Milot S; Villemur R Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of bioelectricity generation by cofactor manipulation in microbial fuel cell. Yong XY; Feng J; Chen YL; Shi DY; Xu YS; Zhou J; Wang SY; Xu L; Yong YC; Sun YM; Shi CL; OuYang PK; Zheng T Biosens Bioelectron; 2014 Jun; 56():19-25. PubMed ID: 24445069 [TBL] [Abstract][Full Text] [Related]
7. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin. Yong YC; Yu YY; Yang Y; Liu J; Wang JY; Song H Biotechnol Bioeng; 2013 Feb; 110(2):408-16. PubMed ID: 23007598 [TBL] [Abstract][Full Text] [Related]
9. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the performance of Escherichia coli-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway. Feng J; Qian Y; Wang Z; Wang X; Xu S; Chen K; Ouyang P J Biotechnol; 2018 Jun; 275():1-6. PubMed ID: 29581032 [TBL] [Abstract][Full Text] [Related]
11. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines. Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838 [TBL] [Abstract][Full Text] [Related]
12. The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production. Soberón-Chávez G; Aguirre-Ramírez M; Sánchez R J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):675-7. PubMed ID: 15937697 [TBL] [Abstract][Full Text] [Related]
13. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Cabrera-Valladares N; Richardson AP; Olvera C; Treviño LG; Déziel E; Lépine F; Soberón-Chávez G Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602 [TBL] [Abstract][Full Text] [Related]
14. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7]. Luo HP; Liu GL; Zhang RD; Cao LX Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018 [TBL] [Abstract][Full Text] [Related]
15. Microbial phenazine production enhances electron transfer in biofuel cells. Rabaey K; Boon N; Höfte M; Verstraete W Environ Sci Technol; 2005 May; 39(9):3401-8. PubMed ID: 15926596 [TBL] [Abstract][Full Text] [Related]
16. Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: pyocyanin production as electron shuttle. Varnava CK; Persianis P; Ieropoulos I; Tsipa A Bioprocess Biosyst Eng; 2024 Jun; 47(6):903-917. PubMed ID: 38630261 [TBL] [Abstract][Full Text] [Related]
17. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Twigg MS; Tripathi L; Zompra A; Salek K; Irorere VU; Gutierrez T; Spyroulias GA; Marchant R; Banat IM Appl Microbiol Biotechnol; 2018 Oct; 102(19):8537-8549. PubMed ID: 29992435 [TBL] [Abstract][Full Text] [Related]
18. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Vinckx T; Wei Q; Matthijs S; Cornelis P Microbiology (Reading); 2010 Mar; 156(Pt 3):678-686. PubMed ID: 19926657 [TBL] [Abstract][Full Text] [Related]
19. Analysis of functional genomes from metagenomes: Revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition. Zhang Y; Jiang J; Zhao Q; Wang K; Yu H Bioelectrochemistry; 2018 Feb; 119():59-67. PubMed ID: 28917182 [TBL] [Abstract][Full Text] [Related]
20. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Kahraman H; Erenler SO Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]