These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26356115)

  • 1. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels.
    Sfakiotakis S; Vamvuka D
    Bioresour Technol; 2015 Dec; 197():434-42. PubMed ID: 26356115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model.
    Arenas CN; Navarro MV; Martínez JD
    Bioresour Technol; 2019 Sep; 288():121485. PubMed ID: 31136890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis.
    Xu D; Chai M; Dong Z; Rahman MM; Yu X; Cai J
    Bioresour Technol; 2018 Oct; 265():139-145. PubMed ID: 29890438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of solid waste pyrolysis using distributed activation energy model.
    Bhavanam A; Sastry RC
    Bioresour Technol; 2015 Feb; 178():126-131. PubMed ID: 25455087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis.
    Liu G; Song H; Wu J
    Waste Manag; 2015 Jul; 41():128-33. PubMed ID: 25892437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis.
    Ceylan S; Topcu Y; Ceylan Z
    Bioresour Technol; 2014 Nov; 171():193-8. PubMed ID: 25194914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.
    Cai J; Wu W; Liu R
    Bioresour Technol; 2013 Mar; 132():423-6. PubMed ID: 23280091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T; Zhang J; Wu J
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure.
    Radojević M; Janković B; Jovanović V; Stojiljković D; Manić N
    PLoS One; 2018; 13(10):e0206657. PubMed ID: 30379972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model.
    Yan JH; Zhu HM; Jiang XG; Chi Y; Cen KF
    J Hazard Mater; 2009 Mar; 162(2-3):646-51. PubMed ID: 18579296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry.
    Yang X; Zhang R; Fu J; Geng S; Cheng JJ; Sun Y
    Bioresour Technol; 2014 Jul; 163():335-42. PubMed ID: 24835746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria.
    Hu M; Chen Z; Guo D; Liu C; Xiao B; Hu Z; Liu S
    Bioresour Technol; 2015 Feb; 177():41-50. PubMed ID: 25479392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer.
    Wu K; Liu J; Wu Y; Chen Y; Li Q; Xiao X; Yang M
    Bioresour Technol; 2014 Jul; 163():18-25. PubMed ID: 24768943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.
    Ferrara F; Orsini A; Plaisant A; Pettinau A
    Bioresour Technol; 2014 Nov; 171():433-41. PubMed ID: 25226060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General distributed activation energy model (G-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge.
    Lin Y; Tian Y; Xia Y; Fang S; Liao Y; Yu Z; Ma X
    Bioresour Technol; 2019 Feb; 273():545-555. PubMed ID: 30472354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis.
    Hu Z; Chen Z; Li G; Chen X; Hu M; Laghari M; Wang X; Guo D
    Bioresour Technol; 2015 Oct; 194():364-72. PubMed ID: 26210527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK; Gu S; Jin B; Fang MX
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.