BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26356237)

  • 1. Removing noises caused by motion artefacts in microcirculation maps of human skin in vivo.
    Chen C; Shi W; Gao W
    J Microsc; 2015 Dec; 260(3):389-99. PubMed ID: 26356237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved microcirculation imaging of human skin in vivo using optical microangiography with a correlation mapping mask.
    Choi WJ; Reif R; Yousefi S; Wang RK
    J Biomed Opt; 2014 Mar; 19(3):36010. PubMed ID: 24623159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of psoriatic plaque in vivo with correlation mapping optical coherence tomography.
    Zafar H; Enfield J; O'Connell ML; Ramsay B; Lynch M; Leahy MJ
    Skin Res Technol; 2014 May; 20(2):141-6. PubMed ID: 23869903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of cmOCT and continuous wavelet transform analysis to the assessment of skin microcirculation dynamics.
    Smirni S; MacDonald MP; Robertson CP; McNamara PM; O'Gorman S; Leahy MJ; Khan F
    J Biomed Opt; 2018 Jul; 23(7):1-13. PubMed ID: 29992798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo.
    Chen C; Shi W; Gao W
    J Biomed Opt; 2015 Nov; 20(11):116009. PubMed ID: 26618523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images.
    Jonathan E; Enfield J; Leahy MJ
    J Biophotonics; 2011 Sep; 4(9):583-7. PubMed ID: 21887769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced in vivo visualization of the microcirculation by topical application of fructose solution confirmed with correlation mapping optical coherence tomography.
    Enfield J; McGrath J; Daly SM; Leahy M
    J Biomed Opt; 2016 Aug; 21(8):081212. PubMed ID: 27311423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration.
    Abouei E; Lee AMD; Pahlevaninezhad H; Hohert G; Cua M; Lane P; Lam S; MacAulay C
    J Biomed Opt; 2018 Jan; 23(1):1-13. PubMed ID: 29302954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo.
    Liew YM; McLaughlin RA; Wood FM; Sampson DD
    J Biomed Opt; 2011 Nov; 16(11):116018. PubMed ID: 22112123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential standard deviation of log-scale intensity based optical coherence tomography angiography.
    Shi W; Gao W; Chen C; Yang VXD
    J Biophotonics; 2017 Dec; 10(12):1597-1606. PubMed ID: 28133932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo tissue injury mapping using optical coherence tomography based methods.
    Baran U; Li Y; Wang RK
    Appl Opt; 2015 Jul; 54(21):6448-53. PubMed ID: 26367827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography.
    Kuranov RV; Sapozhnikova VV; Prough DS; Cicenaite I; Esenaliev RO
    Phys Med Biol; 2006 Aug; 51(16):3885-900. PubMed ID: 16885613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcirculation imaging based on full-range high-speed spectral domain correlation mapping optical coherence tomography.
    Subhash HM; Leahy MJ
    J Biomed Opt; 2014 Feb; 19(2):21103. PubMed ID: 23807553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT).
    Enfield J; Jonathan E; Leahy M
    Biomed Opt Express; 2011 Apr; 2(5):1184-93. PubMed ID: 21559130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artefact reduction for cell migration visualization using spectral domain optical coherence tomography.
    Hofer B; Povazay B; Hermann B; Rey SM; Kajić V; Tumlinson A; Powell K; Matz G; Drexler W
    J Biophotonics; 2011 May; 4(5):355-67. PubMed ID: 21520429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speckle reduction in optical coherence tomography imaging by affine-motion image registration.
    Alonso-Caneiro D; Read SA; Collins MJ
    J Biomed Opt; 2011 Nov; 16(11):116027. PubMed ID: 22112132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angular high-speed massively parallel detection spectral-domain optical coherence tomography for speckle reduction.
    Watanabe Y; Hasegawa H; Maeno S
    J Biomed Opt; 2011 Jun; 16(6):060504. PubMed ID: 21721798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle-constrained variational methods for image restoration in optical coherence tomography.
    Yin D; Gu Y; Xue P
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):878-85. PubMed ID: 23695318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNR-Adaptive OCT Angiography Enabled by Statistical Characterization of Intensity and Decorrelation With Multi-Variate Time Series Model.
    Huang L; Fu Y; Chen R; Yang S; Qiu H; Wu X; Zhao S; Gu Y; Li P
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2695-2704. PubMed ID: 30990423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability.
    Zaitsev VY; Matveev LA; Matveyev AL; Gelikonov GV; Gelikonov VM
    J Biomed Opt; 2014 Feb; 19(2):21107. PubMed ID: 24042446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.