These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26356386)

  • 1. The emergence of copper(I)-based dye sensitized solar cells.
    Housecroft CE; Constable EC
    Chem Soc Rev; 2015 Dec; 44(23):8386-98. PubMed ID: 26356386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar cells.
    Abbotto A; Manfredi N
    Dalton Trans; 2011 Dec; 40(46):12421-38. PubMed ID: 21833401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New ruthenium sensitizers featuring bulky ancillary ligands combined with a dual functioned coadsorbent for high efficiency dye-sensitized solar cells.
    Shi Y; Liang M; Wang L; Han H; You L; Sun Z; Xue S
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):144-53. PubMed ID: 23234441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium sensitizer with a thienylvinylbipyridyl ligand for dye-sensitized solar cells.
    Yu Z; Najafabadi HM; Xu Y; Nonomura K; Sun L; Kloo L
    Dalton Trans; 2011 Sep; 40(33):8361-6. PubMed ID: 21769336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the efficiency improvement of black-dye-based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cations in electrolyte solutions.
    Ozawa H; Okuyama Y; Arakawa H
    Chemphyschem; 2014 Apr; 15(6):1201-6. PubMed ID: 24482147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel ruthenium sensitizers with a dianionic tridentate ligand for dye-sensitized solar cells: the relationship between the solar cell performances and the electron-withdrawing ability of substituents on the ligand.
    Ozawa H; Honda S; Katano D; Sugiura T; Arakawa H
    Dalton Trans; 2014 Jun; 43(21):8026-36. PubMed ID: 24715055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sticky complexes: carboxylic acid-functionalized N-phenylpyridin-2-ylmethanimine ligands as anchoring domains for copper and ruthenium dye-sensitized solar cells.
    Bozic-Weber B; Constable EC; Housecroft CE; Neuburger M; Price JR
    Dalton Trans; 2010 Apr; 39(15):3585-94. PubMed ID: 20354612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells.
    Weidelener M; Powar S; Kast H; Yu Z; Boix PP; Li C; Müllen K; Geiger T; Kuster S; Nüesch F; Bach U; Mishra A; Bäuerle P
    Chem Asian J; 2014 Nov; 9(11):3251-63. PubMed ID: 25234556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.
    De Angelis F
    Acc Chem Res; 2014 Nov; 47(11):3349-60. PubMed ID: 24856085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells.
    Feldt SM; Gibson EA; Gabrielsson E; Sun L; Boschloo G; Hagfeldt A
    J Am Chem Soc; 2010 Nov; 132(46):16714-24. PubMed ID: 21047080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.
    Hardin BE; Sellinger A; Moehl T; Humphry-Baker R; Moser JE; Wang P; Zakeeruddin SM; Grätzel M; McGehee MD
    J Am Chem Soc; 2011 Jul; 133(27):10662-7. PubMed ID: 21619039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators.
    Housecroft CE; Constable EC
    Chem Sci; 2022 Feb; 13(5):1225-1262. PubMed ID: 35222908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arylamine organic dyes for dye-sensitized solar cells.
    Liang M; Chen J
    Chem Soc Rev; 2013 Apr; 42(8):3453-88. PubMed ID: 23396530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells.
    Mukherjee S; Bowman DN; Jakubikova E
    Inorg Chem; 2015 Jan; 54(2):560-9. PubMed ID: 25531506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.
    Ooyama Y; Harima Y
    Chemphyschem; 2012 Dec; 13(18):4032-80. PubMed ID: 22807392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ruthenium phthalocyanine-bipyridyl dyads as sensitizers for dye-sensitized solar cells: dye coverage versus molecular efficiency.
    Rawling T; Austin C; Buchholz F; Colbran SB; McDonagh AM
    Inorg Chem; 2009 Apr; 48(7):3215-27. PubMed ID: 19278209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells.
    Nguyen TD; Lan YP; Wu CG
    Inorg Chem; 2018 Feb; 57(3):1527-1534. PubMed ID: 29356508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.