These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26356490)

  • 1. Dynamic Properties of Glass-Formers Governed by the Frequency Dispersion of the Structural α-Relaxation: Examples from Prilocaine.
    Wojnarowska Z; Rams-Baron M; Knapik J; Ngai KL; Kruk D; Paluch M
    J Phys Chem B; 2015 Oct; 119(39):12699-707. PubMed ID: 26356490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A connection between the structural α-relaxation and the β-relaxation found in bulk metallic glass-formers.
    Ngai KL; Wang Z; Gao XQ; Yu HB; Wang WH
    J Chem Phys; 2013 Jul; 139(1):014502. PubMed ID: 23822309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical issues of current research on the dynamics leading to glass transition.
    Capaccioli S; Thayyil MS; Ngai KL
    J Phys Chem B; 2008 Dec; 112(50):16035-49. PubMed ID: 19367954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning molecular dynamics by hydration and confinement: antiplasticizing effect of water in hydrated prilocaine nanoclusters.
    Ruiz GN; Combarro-Palacios I; McLain SE; Schwartz GA; Pardo LC; Cerveny S; Macovez R
    Phys Chem Chem Phys; 2019 Jul; 21(28):15576-15583. PubMed ID: 31267115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment.
    Pikal MJ; Chang LL; Tang XC
    J Pharm Sci; 2004 Apr; 93(4):981-94. PubMed ID: 14999734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do theories of the glass transition, in which the structural relaxation time does not define the dispersion of the structural relaxation, need revision?
    Ngai KL; Casalini R; Capaccioli S; Paluch M; Roland CM
    J Phys Chem B; 2005 Sep; 109(37):17356-60. PubMed ID: 16853218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length scales and dynamics in the reorientational relaxation of tracers in molecular and polymeric glass formers via electron spin resonance spectroscopy.
    Andreozzi L; Faetti M; Giordano M; Zulli F
    J Phys Chem B; 2010 Oct; 114(40):12833-9. PubMed ID: 20860386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structural α-relaxation times of prilocaine confined in 1 nm pores of molecular sieves: quantitative explanation by the coupling model.
    Ngai KL; Wojnarowska Z; Paluch M
    Phys Chem Chem Phys; 2020 May; 22(17):9257-9261. PubMed ID: 32307500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoupling of conductivity relaxation from structural relaxation in protic ionic liquids and general properties.
    Wojnarowska Z; Kołodziejczyk K; Paluch KJ; Tajber L; Grzybowska K; Ngai KL; Paluch M
    Phys Chem Chem Phys; 2013 Jun; 15(23):9205-11. PubMed ID: 23652993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does Brillouin light scattering probe the primary glass transition process at temperatures well above glass transition?
    Voudouris P; Gomopoulos N; Le Grand A; Hadjichristidis N; Floudas G; Ediger MD; Fytas G
    J Chem Phys; 2010 Feb; 132(7):074906. PubMed ID: 20170250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Many-Body Nature of Relaxation Processes in Glass-Forming Systems.
    Capaccioli S; Paluch M; Prevosto D; Wang LM; Ngai KL
    J Phys Chem Lett; 2012 Mar; 3(6):735-43. PubMed ID: 26286282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced strength and extent of dynamic heterogeneity in a strong glass former as compared to fragile glass formers.
    Staley H; Flenner E; Szamel G
    J Chem Phys; 2015 Dec; 143(24):244501. PubMed ID: 26723686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of asymmetric binary glass formers. I. A dielectric and nuclear magnetic resonance spectroscopy study.
    Kahlau R; Bock D; Schmidtke B; Rössler EA
    J Chem Phys; 2014 Jan; 140(4):044509. PubMed ID: 25669557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The descent into glass formation in polymer fluids.
    Freed KF
    Acc Chem Res; 2011 Mar; 44(3):194-203. PubMed ID: 21207948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics of ethylene glycol dimethacrylate glass former: influence of different crystallization pathways.
    Viciosa MT; Correia NT; Salmerón Sánchez M; Gómez Ribelles JL; Dionísio M
    J Phys Chem B; 2009 Oct; 113(43):14196-208. PubMed ID: 19845405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-liquid miscibility gaps in drug-water binary systems: crystal structure and thermodynamic properties of prilocaine and the temperature-composition phase diagram of the prilocaine-water system.
    Rietveld IB; Perrin MA; Toscani S; Barrio M; Nicolai B; Tamarit JL; Ceolin R
    Mol Pharm; 2013 Apr; 10(4):1332-9. PubMed ID: 23339548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.