BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26356852)

  • 1. Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic.
    Fakhraei S; Huang B; Raschid L; Getoor L
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):775-87. PubMed ID: 26356852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse similarity and reliable negative samples for drug side-effect prediction.
    Zheng Y; Peng H; Ghosh S; Lan C; Li J
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):554. PubMed ID: 30717666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization.
    Ezzat A; Zhao P; Wu M; Li XL; Kwoh CK
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):646-656. PubMed ID: 26890921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A probabilistic approach for collective similarity-based drug-drug interaction prediction.
    Sridhar D; Fakhraei S; Getoor L
    Bioinformatics; 2016 Oct; 32(20):3175-3182. PubMed ID: 27354693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory.
    Durán C; Daminelli S; Thomas JM; Haupt VJ; Schroeder M; Cannistraci CV
    Brief Bioinform; 2018 Nov; 19(6):1183-1202. PubMed ID: 28453640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining drug and gene similarity measures for drug-target elucidation.
    Perlman L; Gottlieb A; Atias N; Ruppin E; Sharan R
    J Comput Biol; 2011 Feb; 18(2):133-45. PubMed ID: 21314453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data.
    Zhang W; Chen Y; Liu F; Luo F; Tian G; Li X
    BMC Bioinformatics; 2017 Jan; 18(1):18. PubMed ID: 28056782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with Collaborative Matrix Factorization.
    Xia LY; Yang ZY; Zhang H; Liang Y
    J Chem Inf Model; 2019 Jul; 59(7):3340-3351. PubMed ID: 31260620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank.
    Yuan Q; Gao J; Wu D; Zhang S; Mamitsuka H; Zhu S
    Bioinformatics; 2016 Jun; 32(12):i18-i27. PubMed ID: 27307615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of drug-target interaction by label propagation with mutual interaction information derived from heterogeneous network.
    Yan XY; Zhang SW; Zhang SY
    Mol Biosyst; 2016 Feb; 12(2):520-31. PubMed ID: 26675534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-target interaction prediction via class imbalance-aware ensemble learning.
    Ezzat A; Wu M; Li XL; Kwoh CK
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):509. PubMed ID: 28155697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to Predict Drug Target Interaction From Missing Not at Random Labels.
    Lin C; Ni S; Liang Y; Zeng X; Liu X
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):353-359. PubMed ID: 30969929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Old drug repositioning and new drug discovery through similarity learning from drug-target joint feature spaces.
    Zheng Y; Peng H; Zhang X; Zhao Z; Gao X; Li J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):605. PubMed ID: 31881829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-target interaction prediction using ensemble learning and dimensionality reduction.
    Ezzat A; Wu M; Li XL; Kwoh CK
    Methods; 2017 Oct; 129():81-88. PubMed ID: 28549952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning a Markov Logic network for supervised gene regulatory network inference.
    Brouard C; Vrain C; Dubois J; Castel D; Debily MA; d'Alché-Buc F
    BMC Bioinformatics; 2013 Sep; 14():273. PubMed ID: 24028533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors.
    Cichonska A; Ravikumar B; Parri E; Timonen S; Pahikkala T; Airola A; Wennerberg K; Rousu J; Aittokallio T
    PLoS Comput Biol; 2017 Aug; 13(8):e1005678. PubMed ID: 28787438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.
    Zhang W; Yue X; Liu F; Chen Y; Tu S; Zhang X
    BMC Syst Biol; 2017 Dec; 11(Suppl 6):101. PubMed ID: 29297371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.