These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26356860)

  • 1. Extended Graph-Based Models for Enhanced Similarity Search in Cavbase.
    Krotzky T; Fober T; Hüllermeier E; Klebe G
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):878-90. PubMed ID: 26356860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration of Binding Site Comparisons by Graph Partitioning.
    Krotzky T; Klebe G
    Mol Inform; 2015 Aug; 34(8):550-8. PubMed ID: 27490500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale mining for similar protein binding pockets: with RAPMAD retrieval on the fly becomes real.
    Krotzky T; Grunwald C; Egerland U; Klebe G
    J Chem Inf Model; 2015 Jan; 55(1):165-79. PubMed ID: 25474400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.
    Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SEGA: semiglobal graph alignment for structure-based protein comparison.
    Mernberger M; Klebe G; Hüllermeier E
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1330-43. PubMed ID: 21339532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Top-k similar graph matching using TraM in biological networks.
    Amin MS; Finley RL; Jamil HM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1790-804. PubMed ID: 22732692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Integrated Approach to Sequence-Independent Local Alignment of Protein Binding Sites.
    Pang B; Schlessman D; Kuang X; Zhao N; Shyu D; Korkin D; Shyu CR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):298-308. PubMed ID: 26357218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BSAlign: a rapid graph-based algorithm for detecting ligand-binding sites in protein structures.
    Aung Z; Tong JC
    Genome Inform; 2008; 21():65-76. PubMed ID: 19425148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of protein biochemical functions by similarity search using the molecular surface database eF-site.
    Kinoshita K; Nakamura H
    Protein Sci; 2003 Aug; 12(8):1589-95. PubMed ID: 12876308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein binding site prediction by local structural alignment.
    Carl N; Konc J; Vehar B; Janezic D
    J Chem Inf Model; 2010 Oct; 50(10):1906-13. PubMed ID: 20919700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph sharpening plus graph integration: a synergy that improves protein functional classification.
    Shin H; Lisewski AM; Lichtarge O
    Bioinformatics; 2007 Dec; 23(23):3217-24. PubMed ID: 17977886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hash subgraph pairwise kernel for protein-protein interaction extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Li Y
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1190-202. PubMed ID: 22595237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method to detect related function among proteins independent of sequence and fold homology.
    Schmitt S; Kuhn D; Klebe G
    J Mol Biol; 2002 Oct; 323(2):387-406. PubMed ID: 12381328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From the similarity analysis of protein cavities to the functional classification of protein families using cavbase.
    Kuhn D; Weskamp N; Schmitt S; Hüllermeier E; Klebe G
    J Mol Biol; 2006 Jun; 359(4):1023-44. PubMed ID: 16697007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A graph kernel method for DNA-binding site prediction.
    Yan C; Wang Y
    BMC Syst Biol; 2014; 8 Suppl 4(Suppl 4):S10. PubMed ID: 25521807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organizing fuzzy graphs for structure-based comparison of protein pockets.
    Reisen F; Weisel M; Kriegl JM; Schneider G
    J Proteome Res; 2010 Dec; 9(12):6498-510. PubMed ID: 20883038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BioGPS: navigating biological space to predict polypharmacology, off-targeting, and selectivity.
    Siragusa L; Cross S; Baroni M; Goracci L; Cruciani G
    Proteins; 2015 Mar; 83(3):517-32. PubMed ID: 25556939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.