BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 26356866)

  • 1. Study of the Paired Change Points in Bacterial Genes.
    Suvorova YM; Korotkova MA; Korotkov EV
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):955-64. PubMed ID: 26356866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection change points of triplet periodicity of gene.
    Suvorova YM; Rudenko VM; Korotkov EV
    Gene; 2012 Jan; 491(1):58-64. PubMed ID: 21982972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Method for Potential Fusions Detection in Protein-Coding Sequences.
    Suvorova YM; Korotkov EV
    J Comput Biol; 2019 Nov; 26(11):1253-1261. PubMed ID: 31211597
    [No Abstract]   [Full Text] [Related]  

  • 4. Study of the triplet periodicity phase shifts in genes.
    Korotkov EV; Korotkova MA
    J Integr Bioinform; 2010 Mar; 7(3):. PubMed ID: 20375465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach for searching insertions in bacterial genes leading to the phase shift of triplet periodicity.
    Korotkova MA; Kudryashov NA; Korotkov EV
    Genomics Proteomics Bioinformatics; 2011 Oct; 9(4-5):158-70. PubMed ID: 22196359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of triplet periodicity differences inside and between genomes.
    Suvorova YM; Korotkov EV
    Stat Appl Genet Mol Biol; 2015 Apr; 14(2):113-23. PubMed ID: 25719343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification analysis of triplet periodicity in protein-coding regions of genes.
    Frenkel FE; Korotkov EV
    Gene; 2008 Sep; 421(1-2):52-60. PubMed ID: 18593596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation algorithm for DNA sequences.
    Zhang CT; Gao F; Zhang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041917. PubMed ID: 16383430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MISHIMA--a new method for high speed multiple alignment of nucleotide sequences of bacterial genome scale data.
    Kryukov K; Saitou N
    BMC Bioinformatics; 2010 Mar; 11():142. PubMed ID: 20298584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-standard similarity/dissimilarity analysis of DNA sequences.
    Wąż P; Bielińska-Wąż D
    Genomics; 2014 Dec; 104(6 Pt B):464-71. PubMed ID: 25173573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence alignment by cross-correlation.
    Rockwood AL; Crockett DK; Oliphant JR; Elenitoba-Johnson KS
    J Biomol Tech; 2005 Dec; 16(4):453-8. PubMed ID: 16522868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing Uncertainty by Modeling Local Transposon Insertion Frequencies Improves Discrimination of Essential Genes.
    DeJesus MA; Ioerger TR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):92-102. PubMed ID: 26357081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of evolution and structure for multiple sequence alignment.
    Löytynoja A; Goldman N
    Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):3913-9. PubMed ID: 18852103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithms for sequence analysis via mutagenesis.
    Keith JM; Adams P; Bryant D; Cochran DA; Lala GH; Mitchelson KR
    Bioinformatics; 2004 Oct; 20(15):2401-10. PubMed ID: 15145816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics.
    Sallaud C; Gay C; Larmande P; Bès M; Piffanelli P; Piégu B; Droc G; Regad F; Bourgeois E; Meynard D; Périn C; Sabau X; Ghesquière A; Glaszmann JC; Delseny M; Guiderdoni E
    Plant J; 2004 Aug; 39(3):450-64. PubMed ID: 15255873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness assessment of whole bacterial genome segmentations.
    Devillers H; Chiapello H; Schbath S; Karoui ME
    J Comput Biol; 2011 Sep; 18(9):1155-65. PubMed ID: 21899422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using triplet periodicity of nucleotide sequences for finding potential reading frame shifts in genes.
    Frenkel FE; Korotkov EV
    DNA Res; 2009 Apr; 16(2):105-14. PubMed ID: 19261626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of coding and non-coding sequences using local Holder exponent formalism.
    Kulkarni OC; Vigneshwar R; Jayaraman VK; Kulkarni BD
    Bioinformatics; 2005 Oct; 21(20):3818-23. PubMed ID: 16118261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression of Multiple DNA Sequences Using Intra-Sequence and Inter-Sequence Similarities.
    Cheng KO; Wu P; Law NF; Siu WC
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1322-32. PubMed ID: 26671804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.