These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 2635696)

  • 1. Solid phase synthesis of a trypsin inhibitor isolated from the Cucurbitaceae Ecballium elaterium.
    Le-Nguyen D; Nalis D; Castro B
    Int J Pept Protein Res; 1989 Dec; 34(6):492-7. PubMed ID: 2635696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein.
    Kimura RH; Jones DS; Jiang L; Miao Z; Cheng Z; Cochran JR
    PLoS One; 2011 Feb; 6(2):e16112. PubMed ID: 21364742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protease inhibitors from Ecballium elaterium seeds.
    Favel A; Mattras H; Coletti-Previero MA; Zwilling R; Robinson EA; Castro B
    Int J Pept Protein Res; 1989 Mar; 33(3):202-8. PubMed ID: 2654042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site chemical mutagenesis of Ecballium elaterium trypsin inhibitor II: new microproteins inhibiting elastase and chymotrypsin.
    Favel A; Le-Nguyen D; Coletti-Previero MA; Castro B
    Biochem Biophys Res Commun; 1989 Jul; 162(1):79-82. PubMed ID: 2751673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening.
    Wentzel A; Christmann A; Krätzner R; Kolmar H
    J Biol Chem; 1999 Jul; 274(30):21037-43. PubMed ID: 10409654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrogating and predicting tolerated sequence diversity in protein folds: application to E. elaterium trypsin inhibitor-II cystine-knot miniprotein.
    Lahti JL; Silverman AP; Cochran JR
    PLoS Comput Biol; 2009 Sep; 5(9):e1000499. PubMed ID: 19730675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H 2D NMR and distance geometry study of the folding of Ecballium elaterium trypsin inhibitor, a member of the squash inhibitors family.
    Heitz A; Chiche L; Le-Nguyen D; Castro B
    Biochemistry; 1989 Mar; 28(6):2392-8. PubMed ID: 2730872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An 1H NMR determination of the three-dimensional structures of mirror-image forms of a Leu-5 variant of the trypsin inhibitor from Ecballium elaterium (EETI-II).
    Nielsen KJ; Alewood D; Andrews J; Kent SB; Craik DJ
    Protein Sci; 1994 Feb; 3(2):291-302. PubMed ID: 8003965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of Ecballium elaterium trypsin inhibitor II (EETI-II): a rigid molecular scaffold.
    Krätzner R; Debreczeni JE; Pape T; Schneider TR; Wentzel A; Kolmar H; Sheldrick GM; Uson I
    Acta Crystallogr D Biol Crystallogr; 2005 Sep; 61(Pt 9):1255-62. PubMed ID: 16131759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and 2D NMR study of the stable [9-21, 15-27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II.
    Le-Nguyen D; Heitz A; Chiche L; el Hajji M; Castro B
    Protein Sci; 1993 Feb; 2(2):165-74. PubMed ID: 8443596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenopeptide analogs of EETI-II retain potent trypsin inhibitory activities.
    Walewska A; Jaśkiewicz A; Bulaj G; Rolka K
    Chem Biol Drug Des; 2011 Jan; 77(1):93-7. PubMed ID: 20958922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray study of porcine trypsin, free and complexed with Ecballium elaterium trypsin inhibitor, a member of the squash inhibitors family.
    Gaboriaud C; Vaney MC; Bachet B; Le-Nguyen D; Castro B; Mornon JP
    J Mol Biol; 1989 Dec; 210(4):883-4. PubMed ID: 2614849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of five new low-molecular-mass trypsin inhibitors from white mustard (Sinapis alba L.) seed.
    Ruoppolo M; Amoresano A; Pucci P; Pascarella S; Polticelli F; Trovato M; Menegatti E; Ascenzi P
    Eur J Biochem; 2000 Nov; 267(21):6486-92. PubMed ID: 11029593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination and reoxidation of the disulfide bridges of a squash-type trypsin inhibitor from Sechium edule seeds.
    Faça VM; Pereira SR; Laure HJ; Greene LJ
    Protein J; 2004 Jul; 23(5):309-15. PubMed ID: 15328886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of the squash trypsin inhibitor EETI II. Evidence of native and non-native local structural preferences in a linear analogue.
    Heitz A; Chiche L; Le-Nguyen D; Castro B
    Eur J Biochem; 1995 Nov; 233(3):837-46. PubMed ID: 8521849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. d-Amino Acid Scan of Two Small Proteins.
    Simon MD; Maki Y; Vinogradov AA; Zhang C; Yu H; Lin YS; Kajihara Y; Pentelute BL
    J Am Chem Soc; 2016 Sep; 138(37):12099-111. PubMed ID: 27494078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The amino acid sequence and reactive site of a single-headed trypsin inhibitor from wheat endosperm.
    Poerio E; Caporale C; Carrano L; Caruso C; Vacca F; Buonocore V
    J Protein Chem; 1994 Feb; 13(2):187-94. PubMed ID: 8060492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsin inhibitors from the garden four o'clock (Mirabilis jalapa) and spinach (Spinacia oleracea) seeds: isolation, characterization and chemical synthesis.
    Kowalska J; Pszczoła K; Wilimowska-Pelc A; Lorenc-Kubis I; Zuziak E; Ługowski M; Łegowska A; Kwiatkowska A; Sleszyńska M; Lesner A; Walewska A; Zabłotna E; Rolka K; Wilusz T
    Phytochemistry; 2007 Jun; 68(11):1487-96. PubMed ID: 17481678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides.
    Christmann A; Walter K; Wentzel A; Krätzner R; Kolmar H
    Protein Eng; 1999 Sep; 12(9):797-806. PubMed ID: 10506290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New binding specificities derived from Min-23, a small cystine-stabilized peptidic scaffold.
    Souriau C; Chiche L; Irving R; Hudson P
    Biochemistry; 2005 May; 44(19):7143-55. PubMed ID: 15882053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.