These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Optimizing interconnections to maximize the spectral radius of interdependent networks. Chen H; Zhao X; Liu F; Xu S; Lu W Phys Rev E; 2017 Mar; 95(3-1):032308. PubMed ID: 28415238 [TBL] [Abstract][Full Text] [Related]
64. Juniper: A Tree+ Table Approach to Multivariate Graph Visualization. Nobre C; Streit M; Lex A IEEE Trans Vis Comput Graph; 2018 Sep; ():. PubMed ID: 30188828 [TBL] [Abstract][Full Text] [Related]
65. Eigenvector dynamics under perturbation of modular networks. Sarkar S; Chawla S; Robinson PA; Fortunato S Phys Rev E; 2016 Jun; 93(6):062312. PubMed ID: 27415285 [TBL] [Abstract][Full Text] [Related]
66. Fused adjacency matrices to enhance information extraction: The beer benchmark. Cavallini N; Savorani F; Bro R; Cocchi M Anal Chim Acta; 2019 Jul; 1061():70-83. PubMed ID: 30926041 [TBL] [Abstract][Full Text] [Related]
67. PathwayMatrix: visualizing binary relationships between proteins in biological pathways. Dang TN; Murray P; Forbes AG BMC Proc; 2015; 9(Suppl 6 Proceedings of the 5th Symposium on Biological Data):S3. PubMed ID: 26361499 [TBL] [Abstract][Full Text] [Related]
68. Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization. Bach B; Riche NH; Hurter C; Marriott K; Dwyer T IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):541-550. PubMed ID: 27875170 [TBL] [Abstract][Full Text] [Related]
69. A permutation method for network assembly. Means SA; Bläsche C; Laing CR PLoS One; 2020; 15(10):e0240888. PubMed ID: 33095802 [TBL] [Abstract][Full Text] [Related]
70. Computationally efficient sandbox algorithm for multifractal analysis of large-scale complex networks with tens of millions of nodes. Ding Y; Liu JL; Li X; Tian YC; Yu ZG Phys Rev E; 2021 Apr; 103(4-1):043303. PubMed ID: 34005996 [TBL] [Abstract][Full Text] [Related]
71. Comprehensive spectral approach for community structure analysis on complex networks. Danila B Phys Rev E; 2016 Feb; 93(2):022301. PubMed ID: 26986346 [TBL] [Abstract][Full Text] [Related]
72. Graphiti: Interactive Specification of Attribute-Based Edges for Network Modeling and Visualization. Srinivasan A; Park H; Endert A; Basole RC IEEE Trans Vis Comput Graph; 2018 Jan; 24(1):226-235. PubMed ID: 28866561 [TBL] [Abstract][Full Text] [Related]
73. VisMatchmaker: Cooperation of the User and the Computer in Centralized Matching Adjustment. Law PM; Wu W; Zheng Y; Qu H IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):231-240. PubMed ID: 27875140 [TBL] [Abstract][Full Text] [Related]
74. A Dark Target Detection Method Based on the Adjacency Effect: A Case Study on Crack Detection. Yu L; Tian Y; Wu W Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242615 [TBL] [Abstract][Full Text] [Related]
75. Node Importance Identification for Temporal Networks Based on Optimized Supra-Adjacency Matrix. Liu R; Zhang S; Zhang D; Zhang X; Bao X Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420410 [TBL] [Abstract][Full Text] [Related]
76. Finding community structure using the ordered random graph model. Ochi M; Kawamoto T Phys Rev E; 2023 Jul; 108(1-1):014303. PubMed ID: 37583142 [TBL] [Abstract][Full Text] [Related]
77. Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation. Taylor D; Shai S; Stanley N; Mucha PJ Phys Rev Lett; 2016 Jun; 116(22):228301. PubMed ID: 27314740 [TBL] [Abstract][Full Text] [Related]
78. An investigation into the effects and effectiveness of correlation network filtration methods with financial returns. Millington T PLoS One; 2022; 17(9):e0273830. PubMed ID: 36070303 [TBL] [Abstract][Full Text] [Related]
79. The Maximum Eigenvalue of the Brain Functional Network Adjacency Matrix: Meaning and Application in Mental Fatigue Evaluation. Li G; Jiang Y; Jiao W; Xu W; Huang S; Gao Z; Zhang J; Wang C Brain Sci; 2020 Feb; 10(2):. PubMed ID: 32050462 [TBL] [Abstract][Full Text] [Related]
80. Bias-adjusted spectral clustering in multi-layer stochastic block models. Lei J; Lin KZ J Am Stat Assoc; 2023; 118(544):2433-2445. PubMed ID: 38532854 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]