These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 26357214)

  • 1. Predicting Microbial Interactions Using Vector Autoregressive Model with Graph Regularization.
    Jiang X; Hu X; Xu W; Park EK
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):254-61. PubMed ID: 26357214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring microbial interaction networks based on consensus similarity network fusion.
    Jiang X; Hu X
    Sci China Life Sci; 2014 Nov; 57(11):1115-20. PubMed ID: 25326827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted fusion regularisation and predicting microbial interactions with vector autoregressive model.
    Wang Y; He T; Jiang X; Yuan J; Shen X
    Int J Data Min Bioinform; 2015; 13(4):378-94. PubMed ID: 26547985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel graph theoretical approach for modeling microbiomes and inferring microbial ecological relationships.
    Kim S; Thapa I; Zhang L; Ali H
    BMC Genomics; 2019 Dec; 20(Suppl 11):945. PubMed ID: 31856723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized microbial network inference via co-regularized spectral clustering.
    Imangaliyev S; Keijser B; Crielaard W; Tsivtsivadze E
    Methods; 2015 Jul; 83():28-35. PubMed ID: 25842007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Inference of Direct Interactions in Large-Scale Ecological Networks from Heterogeneous Microbial Sequencing Data.
    Tackmann J; Matias Rodrigues JF; von Mering C
    Cell Syst; 2019 Sep; 9(3):286-296.e8. PubMed ID: 31542415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MPLasso: Inferring microbial association networks using prior microbial knowledge.
    Lo C; Marculescu R
    PLoS Comput Biol; 2017 Dec; 13(12):e1005915. PubMed ID: 29281638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles.
    Shaw GT; Pao YY; Wang D
    BMC Bioinformatics; 2016 Nov; 17(1):488. PubMed ID: 27887570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring microbial interaction network from microbiome data using RMN algorithm.
    Tsai KN; Lin SH; Liu WC; Wang D
    BMC Syst Biol; 2015 Sep; 9():54. PubMed ID: 26337930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boolean analysis reveals systematic interactions among low-abundance species in the human gut microbiome.
    Claussen JC; Skiecevičienė J; Wang J; Rausch P; Karlsen TH; Lieb W; Baines JF; Franke A; Hütt MT
    PLoS Comput Biol; 2017 Jun; 13(6):e1005361. PubMed ID: 28640804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering microbial interactions in synthetic human gut microbiome communities.
    Venturelli OS; Carr AC; Fisher G; Hsu RH; Lau R; Bowen BP; Hromada S; Northen T; Arkin AP
    Mol Syst Biol; 2018 Jun; 14(6):e8157. PubMed ID: 29930200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BiomeNet: a Bayesian model for inference of metabolic divergence among microbial communities.
    Shafiei M; Dunn KA; Chipman H; Gu H; Bielawski JP
    PLoS Comput Biol; 2014 Nov; 10(11):e1003918. PubMed ID: 25412107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based and phylogenetically adjusted quantification of metabolic interaction between microbial species.
    Lam TJ; Stamboulian M; Han W; Ye Y
    PLoS Comput Biol; 2020 Oct; 16(10):e1007951. PubMed ID: 33125363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting interaction networks in the human microbiome with conditional Granger causality.
    Mainali K; Bewick S; Vecchio-Pagan B; Karig D; Fagan WF
    PLoS Comput Biol; 2019 May; 15(5):e1007037. PubMed ID: 31107866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomics meets time series analysis: unraveling microbial community dynamics.
    Faust K; Lahti L; Gonze D; de Vos WM; Raes J
    Curr Opin Microbiol; 2015 Jun; 25():56-66. PubMed ID: 26005845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difficulty in inferring microbial community structure based on co-occurrence network approaches.
    Hirano H; Takemoto K
    BMC Bioinformatics; 2019 Jun; 20(1):329. PubMed ID: 31195956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using null models to infer microbial co-occurrence networks.
    Connor N; Barberán A; Clauset A
    PLoS One; 2017; 12(5):e0176751. PubMed ID: 28493918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Community-analyzer: a platform for visualizing and comparing microbial community structure across microbiomes.
    Kuntal BK; Ghosh TS; Mande SS
    Genomics; 2013 Oct; 102(4):409-18. PubMed ID: 23978768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision.
    Weiss S; Van Treuren W; Lozupone C; Faust K; Friedman J; Deng Y; Xia LC; Xu ZZ; Ursell L; Alm EJ; Birmingham A; Cram JA; Fuhrman JA; Raes J; Sun F; Zhou J; Knight R
    ISME J; 2016 Jul; 10(7):1669-81. PubMed ID: 26905627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the human microbiome using next-generation sequencing data and bioinformatics approaches.
    Kim Y; Koh I; Rho M
    Methods; 2015 Jun; 79-80():52-9. PubMed ID: 25448477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.