These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26357232)

  • 1. Identifying Driver Nodes in the Human Signaling Network Using Structural Controllability Analysis.
    Liu X; Pan L
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):467-72. PubMed ID: 26357232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis.
    Liu X; Pan L
    BMC Syst Biol; 2014 May; 8():51. PubMed ID: 24885538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WDNfinder: A method for minimum driver node set detection and analysis in directed and weighted biological network.
    Chu Y; Wang Z; Wang R; Zhang N; Li J; Hu Y; Teng M; Wang Y
    J Bioinform Comput Biol; 2017 Oct; 15(5):1750021. PubMed ID: 28918707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.
    Vinayagam A; Gibson TE; Lee HJ; Yilmazel B; Roesel C; Hu Y; Kwon Y; Sharma A; Liu YY; Perrimon N; Barabási AL
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4976-81. PubMed ID: 27091990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllability in cancer metabolic networks according to drug targets as driver nodes.
    Asgari Y; Salehzadeh-Yazdi A; Schreiber F; Masoudi-Nejad A
    PLoS One; 2013; 8(11):e79397. PubMed ID: 24282504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Directed Protein Interaction Networks in Cancer.
    Kanhaiya K; Czeizler E; Gratie C; Petre I
    Sci Rep; 2017 Sep; 7(1):10327. PubMed ID: 28871116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network controllability analysis of intracellular signalling reveals viruses are actively controlling molecular systems.
    Ravindran V; Nacher JC; Akutsu T; Ishitsuka M; Osadcenco A; Sunitha V; Bagler G; Schwartz JM; Robertson DL
    Sci Rep; 2019 Feb; 9(1):2066. PubMed ID: 30765882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis.
    Li M; Zeng T; Liu R; Chen L
    Brief Bioinform; 2014 Mar; 15(2):229-43. PubMed ID: 23620135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Target Controllability of Linear Networks.
    Czeizler E; Wu KC; Gratie C; Kanhaiya K; Petre I
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1217-1228. PubMed ID: 29994605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of complex signaling networks to a representative kernel.
    Kim JR; Kim J; Kwon YK; Lee HY; Heslop-Harrison P; Cho KH
    Sci Signal; 2011 May; 4(175):ra35. PubMed ID: 21632468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A directed protein interaction network for investigating intracellular signal transduction.
    Vinayagam A; Stelzl U; Foulle R; Plassmann S; Zenkner M; Timm J; Assmus HE; Andrade-Navarro MA; Wanker EE
    Sci Signal; 2011 Sep; 4(189):rs8. PubMed ID: 21900206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network controllability is determined by the density of low in-degree and out-degree nodes.
    Menichetti G; Dall'Asta L; Bianconi G
    Phys Rev Lett; 2014 Aug; 113(7):078701. PubMed ID: 25170736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllability of giant connected components in a directed network.
    Liu X; Pan L; Stanley HE; Gao J
    Phys Rev E; 2017 Apr; 95(4-1):042318. PubMed ID: 28505769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constrained evolutionary computation method for detecting controlling regions of cortical networks.
    Tang Y; Wang Z; Gao H; Swift S; Kurths J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1569-81. PubMed ID: 23221081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Entropy-Based Method for Identifying Mutual Exclusive Driver Genes in Cancer.
    Song J; Peng W; Wang F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):758-768. PubMed ID: 30763245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying progression related disease risk modules based on the human subcellular signaling networks.
    Xie R; Huang H; Li W; Chen B; Jiang J; He Y; Lv J; ma B; Zhou Y; Feng C; Chen L; He W
    Mol Biosyst; 2014 Dec; 10(12):3298-309. PubMed ID: 25315201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer-related networks: a help to understand, predict and change malignant transformation.
    Csermely P; Korcsmáros T
    Semin Cancer Biol; 2013 Aug; 23(4):209-12. PubMed ID: 23831276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and Controllability of Cancer Networks: A Boolean Perspective.
    Srihari S; Raman V; Leong HW; Ragan MA
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):83-94. PubMed ID: 26355510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of microRNA regulation of a human cellular signaling network.
    Cui Q; Yu Z; Purisima EO; Wang E
    Mol Syst Biol; 2006; 2():46. PubMed ID: 16969338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.