BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26357292)

  • 1. Blood Flow Clustering and Applications in Virtual Stenting of Intracranial Aneurysms.
    Oeltze S; Lehmann DJ; Kuhn A; Janiga G; Theisel H; Preim B
    IEEE Trans Vis Comput Graph; 2014 May; 20(5):686-701. PubMed ID: 26357292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual stenting of intracranial aneurysms: application of hemodynamic modification analysis.
    Song Y; Choe J; Liu H; Park KJ; Yu H; Lim OK; Kim H; Park D; Ge J; Suh DC
    Acta Radiol; 2016 Aug; 57(8):992-7. PubMed ID: 26503958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of stents and flow diverters on hemodynamics in idealized aneurysm models.
    Seshadhri S; Janiga G; Beuing O; Skalej M; Thévenin D
    J Biomech Eng; 2011 Jul; 133(7):071005. PubMed ID: 21823744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cluster Analysis of Vortical Flow in Simulations of Cerebral Aneurysm Hemodynamics.
    Oeltze-Jafra S; Cebral JR; Janiga G; Preim B
    IEEE Trans Vis Comput Graph; 2016 Jan; 22(1):757-66. PubMed ID: 26390475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-element modeling of the hemodynamics of stented aneurysms.
    Stuhne GR; Steinman DA
    J Biomech Eng; 2004 Jun; 126(3):382-7. PubMed ID: 15341176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics.
    Isoda H; Ohkura Y; Kosugi T; Hirano M; Alley MT; Bammer R; Pelc NJ; Namba H; Sakahara H
    Neuroradiology; 2010 Oct; 52(10):913-20. PubMed ID: 19967532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms.
    Augsburger L; Reymond P; Rufenacht DA; Stergiopulos N
    Ann Biomed Eng; 2011 Feb; 39(2):850-63. PubMed ID: 21042856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automatic CFD-based flow diverter optimization principle for patient-specific intracranial aneurysms.
    Janiga G; Daróczy L; Berg P; Thévenin D; Skalej M; Beuing O
    J Biomech; 2015 Nov; 48(14):3846-52. PubMed ID: 26472308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional hemodynamic design optimization of stents for cerebral aneurysms.
    Lee CJ; Srinivas K; Qian Y
    Proc Inst Mech Eng H; 2014 Mar; 228(3):213-24. PubMed ID: 24525197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angular remodeling in single stent-assisted coiling displaces and attenuates the flow impingement zone at the neck of intracranial bifurcation aneurysms.
    Gao B; Baharoglu MI; Malek AM
    Neurosurgery; 2013 May; 72(5):739-48; discussion 748. PubMed ID: 23328687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Our capricious vessels: The influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment.
    De Bock S; Iannaccone F; De Santis G; De Beule M; Mortier P; Verhegghe B; Segers P
    J Biomech; 2012 May; 45(8):1353-9. PubMed ID: 22483228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realistic virtual intracranial stenting and computational fluid dynamics for treatment analysis.
    Janiga G; Rössl C; Skalej M; Thévenin D
    J Biomech; 2013 Jan; 46(1):7-12. PubMed ID: 23063770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of intracranial aneurysm hemodynamics following flow diverter stent treatment.
    Zhang Y; Chong W; Qian Y
    Med Eng Phys; 2013 May; 35(5):608-15. PubMed ID: 22884174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamics at the ostium of cerebral aneurysms with relation to post-treatment changes by a virtual flow diverter: a computational fluid dynamics study.
    Karmonik C; Chintalapani G; Redel T; Zhang YJ; Diaz O; Klucznik R; Grossman RG
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1895-8. PubMed ID: 24110082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms.
    Sun Q; Groth A; Aach T
    Med Phys; 2012 Feb; 39(2):742-54. PubMed ID: 22320784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual flow-diverter treatment planning: The effect of device placement on bifurcation aneurysm haemodynamics.
    Peach T; Spranger K; Ventikos Y
    Proc Inst Mech Eng H; 2017 May; 231(5):432-443. PubMed ID: 27780870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting.
    Meng H; Wang Z; Kim M; Ecker RD; Hopkins LN
    AJNR Am J Neuroradiol; 2006 Oct; 27(9):1861-5. PubMed ID: 17032857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamics of 8 different configurations of stenting for bifurcation aneurysms.
    Kono K; Terada T
    AJNR Am J Neuroradiol; 2013 Oct; 34(10):1980-6. PubMed ID: 23578668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.