These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 26357314)

  • 1. Randomized Subspace Learning for Proline Cis-Trans Isomerization Prediction.
    Al-Jarrah OY; Yoo PD; Taha K; Muhaidat S; Shami A; Zaki N
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):763-9. PubMed ID: 26357314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Consensus Modeling for Proline Cis-Trans Isomerization Prediction.
    Yoo PD; Muhaidat S; Taha K; Bentahar J; Shami A
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):26-32. PubMed ID: 26355504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information.
    Song J; Burrage K; Yuan Z; Huber T
    BMC Bioinformatics; 2006 Mar; 7():124. PubMed ID: 16526956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins.
    Guan RJ; Xiang Y; He XL; Wang CG; Wang M; Zhang Y; Sundberg EJ; Wang DC
    J Mol Biol; 2004 Aug; 341(5):1189-204. PubMed ID: 15321715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of i and i+3 residue identity on cis-trans isomerism of the aromatic(i+1)-prolyl(i+2) amide bond: implications for type VI beta-turn formation.
    Meng HY; Thomas KM; Lee AE; Zondlo NJ
    Biopolymers; 2006; 84(2):192-204. PubMed ID: 16208767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the cis to trans isomerization of prolyl-peptide bonds under tension.
    Chen J; Edwards SA; Gräter F; Baldauf C
    J Phys Chem B; 2012 Aug; 116(31):9346-51. PubMed ID: 22770126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cis-trans proline isomerization effects on collagen triple-helix stability are limited.
    Dai N; Etzkorn FA
    J Am Chem Soc; 2009 Sep; 131(38):13728-32. PubMed ID: 19725497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of cis/trans isomerization using feature selection and support vector machines.
    Exarchos KP; Papaloukas C; Exarchos TP; Troganis AN; Fotiadis DI
    J Biomed Inform; 2009 Feb; 42(1):140-9. PubMed ID: 18586558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues.
    Song IK; Kang YK
    J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of proline residues to protein stability is associated with isomerization equilibrium in both unfolded and folded states.
    Ge M; Pan XM
    Extremophiles; 2009 May; 13(3):481-9. PubMed ID: 19262980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of the Rate-Limiting Step of Thioredoxin Folding by Replacement of its Conserved cis-Proline with (4 S)-Fluoroproline.
    Roderer D; Glockshuber R; Rubini M
    Chembiochem; 2015 Oct; 16(15):2162-6. PubMed ID: 26382254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cis-trans isomerization and puckering of proline residue.
    Kang YK; Choi HY
    Biophys Chem; 2004 Oct; 111(2):135-42. PubMed ID: 15381311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli cyclophilin B binds a highly distorted form of trans-prolyl peptide isomer.
    Konno M; Sano Y; Okudaira K; Kawaguchi Y; Yamagishi-Ohmori Y; Fushinobu S; Matsuzawa H
    Eur J Biochem; 2004 Sep; 271(18):3794-803. PubMed ID: 15355356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propensity for cis-Proline Formation in Unfolded Proteins.
    Alderson TR; Lee JH; Charlier C; Ying J; Bax A
    Chembiochem; 2018 Jan; 19(1):37-42. PubMed ID: 29064600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding of class A beta-lactamases is rate-limited by peptide bond isomerization and occurs via parallel pathways.
    Vandenameele J; Lejeune A; Di Paolo A; Brans A; Frère JM; Schmid FX; Matagne A
    Biochemistry; 2010 May; 49(19):4264-75. PubMed ID: 20384356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic control of amide cis-trans isomerism via the aromatic-prolyl interaction.
    Thomas KM; Naduthambi D; Zondlo NJ
    J Am Chem Soc; 2006 Feb; 128(7):2216-7. PubMed ID: 16478167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the cyclic peptide [W8S]contryphan Vn: effect of the tryptophan/serine substitution on trans-cis proline isomerization.
    Nepravishta R; Mandaliti W; Melino S; Eliseo T; Paci M
    Amino Acids; 2014 Dec; 46(12):2841-53. PubMed ID: 25261131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: accelerated molecular dynamics analysis.
    Hamelberg D; Shen T; McCammon JA
    J Am Chem Soc; 2005 Feb; 127(6):1969-74. PubMed ID: 15701032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational preferences of non-prolyl and prolyl residues.
    Kang YK
    J Phys Chem B; 2006 Oct; 110(42):21338-48. PubMed ID: 17048963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.