BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26357402)

  • 1. Gait Analysis From a Single Ear-Worn Sensor: Reliability and Clinical Evaluation for Orthopaedic Patients.
    Jarchi D; Lo B; Wong C; Ieong E; Nathwani D; Yang GZ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):882-92. PubMed ID: 26357402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Gait Parameters in Huntington's Disease Using Wearable Sensors in the Clinic and Free-living Conditions.
    Lozano-Garcia M; Doheny EP; Mann E; Morgan-Jones P; Drew C; Busse-Morris M; Lowery MM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2239-2249. PubMed ID: 38819972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-power wireless medical sensor platform.
    Dolgov AB; Zane R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2067-70. PubMed ID: 17945693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless EEG systems: increasing functionality, decreasing power.
    Penders J; Yazicioglu RF; van de Molengraft J; Patki S; Torfs T; Brown L; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3441. PubMed ID: 21097257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing walking activity in people with stroke.
    Fulk GD; Lopez-Meyer P; Sazonov ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5211-4. PubMed ID: 22255512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobile remote monitoring of biological signals.
    da Rocha MF; de Azevedo DF; Russomano T; Figueira MV; Helegda S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2057-9. PubMed ID: 17946934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of accelerometers and gyroscopes to estimate hip and knee angles on gait analysis.
    Alonge F; Cucco E; D'Ippolito F; Pulizzotto A
    Sensors (Basel); 2014 May; 14(5):8430-46. PubMed ID: 24828578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State estimation of walking phase and functional electrical stimulation by wearable device.
    Obinata G; Ogisu T; Hase K; Kim Y; Genda E
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5901-4. PubMed ID: 19965053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated biomedical telemetry system for sleep monitoring employing a portable body area network of sensors (SENSATION).
    Astaras A; Arvanitidou M; Chouvarda I; Kilintzis V; Koutkias V; Sanchez EM; Stalidis G; Triantafyllidis A; Maglaveras N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5254-7. PubMed ID: 19163902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biometric and mobile gait analysis for early diagnosis and therapy monitoring in Parkinson's disease.
    Barth J; Klucken J; Kugler P; Kammerer T; Steidl R; Winkler J; Hornegger J; Eskofier B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():868-71. PubMed ID: 22254448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wireless medical monitoring over a heterogeneous sensor network.
    Yuce MR; Ng PC; Lee CK; Khan JY; Liu W
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5895-9. PubMed ID: 18003355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZigBee-based remote patient monitoring.
    Fernandez-Lopez H; Afonso JA; Correia JH; Simões R
    Stud Health Technol Inform; 2012; 177():229-34. PubMed ID: 22942059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technological solution for determining gait parameters using pressure sensors: a case study of multiple sclerosis patients.
    Viqueira Villarejo M; Maeso García J; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3511-22. PubMed ID: 25227064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ear-worn sensor for the detection of gait impairment after abdominal surgery.
    Atallah L; Aziz O; Gray E; Lo B; Yang GZ
    Surg Innov; 2013 Feb; 20(1):86-94. PubMed ID: 22641465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of gait abnormalities in Parkinson's disease using a wireless inertial sensor system.
    Tien I; Glaser SD; Aminoff MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3353-6. PubMed ID: 21097233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of a custom physical activity and knee angle measurement sensor system for patients with neuromuscular disorders and gait abnormalities.
    Feldhege F; Mau-Moeller A; Lindner T; Hein A; Markschies A; Zettl UK; Bader R
    Sensors (Basel); 2015 May; 15(5):10734-52. PubMed ID: 25954954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.
    Altini M; Del Din S; Patel S; Schachter S; Penders J; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1806-9. PubMed ID: 22254679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation.
    Maqbool HF; Husman MAB; Awad MI; Abouhossein A; Iqbal N; Dehghani-Sanij AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1500-1509. PubMed ID: 28114026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-power system-on-chip implementation for respiratory rate detection and transmission.
    Padasdao B; Yee R; Boric-Lubecke O
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4501-4. PubMed ID: 23366928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoe-integrated sensors in physical rehabilitation.
    Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Biomed Mater Eng; 2014; 24(6):3523-8. PubMed ID: 25227065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.