These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Impact of oxygenator design on hemolysis, shear stress, and white blood cell and platelet counts. De Somer D; Foubert L; Vanackere M; Dujardin D; Delanghe J; Van Nooten G J Cardiothorac Vasc Anesth; 1996 Dec; 10(7):884-9. PubMed ID: 8969395 [TBL] [Abstract][Full Text] [Related]
6. A pulsatile cardiopulmonary bypass system that prevents negative pressure at the membrane oxygenator. Komoda T; Maeta H; Imawaki S; Shiraishi Y; Arioka I; Fukunaga S; Tanaka S; Nasu N ASAIO J; 1993; 39(4):936-41. PubMed ID: 8123931 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
8. The effect of flow and pressure on the intraoxygenator flow path of different contemporary oxygenators: an in vitro trial. Hendrix RH; Yeung AK; Ganushchak YM; Weerwind PW Perfusion; 2020 Oct; 35(7):658-663. PubMed ID: 32056504 [TBL] [Abstract][Full Text] [Related]
9. The effect of oxygenator mechanical characteristics on energy transfer during clinical cardiopulmonary bypass. Ganushchak YM; Reesink KD; Weerwind PW; Maessen JG Perfusion; 2011 Jan; 26(1):39-44. PubMed ID: 20921084 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear Flow Rate Response to Pumping Frequency and Reduced Hemolysis in the Drastically Under-Occluded Pulsatile Roller Pump. Yap CH; Lai CQ; Loh IG; Ong TZ Artif Organs; 2017 Feb; 41(2):178-185. PubMed ID: 27653754 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
12. Experimental evaluation of the Medtronic Maxima Forté hollow fiber membrane oxygenator. Mueller XM; Tevaearai HT; Augstburger M; Horisberger J; von Segesser LK J Extra Corpor Technol; 1998 Sep; 30(3):115-9. PubMed ID: 10339286 [TBL] [Abstract][Full Text] [Related]
13. Development of the oxygenator: past, present, and future. Iwahashi H; Yuri K; Nosé Y J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331 [TBL] [Abstract][Full Text] [Related]
14. Deleterious effects of cardiopulmonary bypass. A prospective study of bubble versus membrane oxygenation. van Oeveren W; Kazatchkine MD; Descamps-Latscha B; Maillet F; Fischer E; Carpentier A; Wildevuur CR J Thorac Cardiovasc Surg; 1985 Jun; 89(6):888-99. PubMed ID: 3158783 [TBL] [Abstract][Full Text] [Related]
15. Impact of hollow-fiber membrane surface area on oxygenator performance: Dideco D903 Avant versus a prototype with larger surface area. Mueller XM; Tevaearai HT; Jegger D; Boone Y; Augstburger M; von Segesser LK J Extra Corpor Technol; 2000 Sep; 32(3):152-7. PubMed ID: 11146960 [TBL] [Abstract][Full Text] [Related]
20. Use of a membrane oxygenator for open-heart surgery in infants. Murphy DA; Gillis DA; Lau H Can J Surg; 1976 Mar; 19(2):103-7. PubMed ID: 1260550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]