BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26357789)

  • 41. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.
    Qiu F; Guan Y; Su X; Kunselman A; Undar A
    Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A clinical comparison of bubble elimination in Quadrox and Polystan oxygenators.
    Jirschik M; Keyl C; Beyersdorf F
    Perfusion; 2009 Nov; 24(6):423-7. PubMed ID: 20093338
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.
    Herbst DP
    J Extra Corpor Technol; 2017 Mar; 49(1):44-48. PubMed ID: 28298665
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bubble generation and venous air filtration by hard-shell venous reservoirs: a comparative study.
    Mitchell SJ; Willcox T; Gorman DF
    Perfusion; 1997 Sep; 12(5):325-33. PubMed ID: 9300478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of conventional extracorporeal circulation and minimal extracorporeal circulation with respect to microbubbles and microembolic signals.
    Perthel M; Kseibi S; Sagebiel F; Alken A; Laas J
    Perfusion; 2005 Oct; 20(6):329-33. PubMed ID: 16363318
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Significant reduction of air microbubbles with the dynamic bubble trap during cardiopulmonary bypass.
    Schönburg M; Urbanek P; Erhardt G; Kraus B; Taborski U; Mühling A; Hein S; Roth M; Tiedtke HJ; Klövekorn WP
    Perfusion; 2001 Jan; 16(1):19-25. PubMed ID: 11192303
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pumping O2 with no N2: An Overview of Hollow Fiber Membrane Oxygenators with Integrated Arterial Filters.
    Liu A; Sun Z; Liu Q; Zhu N; Wang S
    Curr Top Med Chem; 2020; 20(1):78-85. PubMed ID: 31820691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: pulsatile flow versus nonpulsatile flow.
    Dodonov M; Milano A; Onorati F; Dal Corso B; Menon T; Ferrarini D; Tessari M; Faggian G; Mazzucco A
    Artif Organs; 2013 Apr; 37(4):357-67. PubMed ID: 23489040
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Air filtering capacity of an integrated cardiopulmonary bypass unit.
    Mueller XM; Tevaearai HT; Jegger D; von Segesser LK
    ASAIO J; 2003; 49(4):365-9. PubMed ID: 12918575
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a completely closed circuit using an air filter in a drainage circuit for minimally invasive cardiac surgery.
    Matayoshi T; Yozu R; Morita M; Shin H; Mitsumaru A; Kawada S
    Artif Organs; 2000 Jun; 24(6):454-8. PubMed ID: 10886065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass.
    Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A
    Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new minimized perfusion circuit provides highly effective ultrasound controlled deairing.
    Kutschka I; Schönrock U; El Essawi A; Pahari D; Anssar M; Harringer W
    Artif Organs; 2007 Mar; 31(3):215-20. PubMed ID: 17343697
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Limitations using the vacuum-assist venous drainage technique during cardiopulmonary bypass procedures.
    Jegger D; Tevaearai HT; Mueller XM; Horisberger J; von Segesser LK
    J Extra Corpor Technol; 2003 Sep; 35(3):207-11. PubMed ID: 14653422
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of three hollow-fiber membrane oxygenators without integrated arterial filters for neonatal cardiopulmonary bypass.
    Dogal NM; Mathis RK; Lin J; Qiu F; Kunselman A; Undar A
    Perfusion; 2012 Mar; 27(2):132-40. PubMed ID: 22115879
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rate constants of embolization and quantitation of emboli from the hollow-fiber oxygenator and arterial filter during cardiopulmonary bypass.
    Dewanjee MK; Palatianos GM; Kapadvanjwala M; Novak S; Hsu LC; Serafini AN; Sfakianakis GN
    ASAIO J; 1992; 38(3):M317-21. PubMed ID: 1457873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential impact of oxygenators with venous air trap on air embolism in veno-arterial Extracorporeal Life Support.
    Born F; Khaladj N; Pichlmaier M; Schramm R; Hagl C; Guenther SP
    Technol Health Care; 2017; 25(1):111-121. PubMed ID: 27497463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emboli from an extraluminal blood flow hollow fiber oxygenator with and without an arterial filter during cardiopulmonary bypass in a pig model.
    Dewanjee MK; Wu SM; Kapadvanjwala M; De D; Dewanjee S; Gonzalez L; Novak S; Hsu LC; Perryman RA; Duncan RC; Serafini AN; Sfakianakis GN; Horton AF
    ASAIO J; 1996; 42(6):1010-8. PubMed ID: 8959277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A clinical evaluation of the Maquet Quadrox-i Neonatal oxygenator with integrated arterial filter.
    Ginther RM; Gorney R; Cruz R
    Perfusion; 2013 May; 28(3):194-9. PubMed ID: 23449822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extracorporeal bubbles: a word of caution.
    De Somer FM; Vetrano MR; Van Beeck JP; Van Nooten GJ
    Interact Cardiovasc Thorac Surg; 2010 Jun; 10(6):995-1001. PubMed ID: 20197351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.