These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26357939)

  • 21. Two cystic fibrosis transmembrane conductance regulator mutations have different effects on both pulmonary phenotype and regulation of outwardly rectified chloride currents.
    Fulmer SB; Schwiebert EM; Morales MM; Guggino WB; Cutting GR
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6832-6. PubMed ID: 7542778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR.
    Rubenstein RC; Egan ME; Zeitlin PL
    J Clin Invest; 1997 Nov; 100(10):2457-65. PubMed ID: 9366560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genistein restores functional interactions between Delta F508-CFTR and ENaC in Xenopus oocytes.
    Suaud L; Li J; Jiang Q; Rubenstein RC; Kleyman TR
    J Biol Chem; 2002 Mar; 277(11):8928-33. PubMed ID: 11773060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs.
    Dittrich NP; Kummer W; Clauss WG; Fronius M
    Int Immunopharmacol; 2015 Nov; 29(1):166-72. PubMed ID: 26286842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Murine and human CFTR exhibit different sensitivities to CFTR potentiators.
    Cui G; McCarty NA
    Am J Physiol Lung Cell Mol Physiol; 2015 Oct; 309(7):L687-99. PubMed ID: 26209275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes.
    Nagel G; Barbry P; Chabot H; Brochiero E; Hartung K; Grygorczyk R
    J Physiol; 2005 May; 564(Pt 3):671-82. PubMed ID: 15746174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator.
    Ismailov II; Awayda MS; Jovov B; Berdiev BK; Fuller CM; Dedman JR; Kaetzel M; Benos DJ
    J Biol Chem; 1996 Mar; 271(9):4725-32. PubMed ID: 8617738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cystic fibrosis transmembrane conductance regulator-associated ATP release is controlled by a chloride sensor.
    Jiang Q; Mak D; Devidas S; Schwiebert EM; Bragin A; Zhang Y; Skach WR; Guggino WB; Foskett JK; Engelhardt JF
    J Cell Biol; 1998 Nov; 143(3):645-57. PubMed ID: 9813087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potentiation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents by the chemical solvent tetrahydrofuran.
    Hughes LK; Ju M; Sheppard DN
    Mol Membr Biol; 2008 Sep; 25(6-7):528-38. PubMed ID: 18989824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes.
    Drumm ML; Wilkinson DJ; Smit LS; Worrell RT; Strong TV; Frizzell RA; Dawson DC; Collins FS
    Science; 1991 Dec; 254(5039):1797-9. PubMed ID: 1722350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of the cystic fibrosis transmembrane conductance regulator by alphaG(i) and RGS proteins.
    Schreiber R; Kindle P; Benzing T; Walz G; Kunzelmann K
    Biochem Biophys Res Commun; 2001 Mar; 281(4):917-23. PubMed ID: 11237748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR.
    MacVinish LJ; Cope G; Ropenga A; Cuthbert AW
    Br J Pharmacol; 2007 Apr; 150(8):1055-65. PubMed ID: 17339840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line.
    Al-Nakkash L; Reinach PS
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2364-70. PubMed ID: 11527951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.
    Miki H; Zhou Z; Li M; Hwang TC; Bompadre SG
    J Biol Chem; 2010 Jun; 285(26):19967-75. PubMed ID: 20406820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of IBMX and alkaline phosphatase inhibitors on Cl- secretion in G551D cystic fibrosis mutant mice.
    Smith SN; Delaney SJ; Dorin JR; Farley R; Geddes DM; Porteous DJ; Wainwright BJ; Alton EW
    Am J Physiol; 1998 Feb; 274(2):C492-9. PubMed ID: 9486140
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator.
    Vennekens R; Trouet D; Vankeerberghen A; Voets T; Cuppens H; Eggermont J; Cassiman JJ; Droogmans G; Nilius B
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):75-85. PubMed ID: 9925879
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells.
    Hallows KR; McCane JE; Kemp BE; Witters LA; Foskett JK
    J Biol Chem; 2003 Jan; 278(2):998-1004. PubMed ID: 12427743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.