BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 26357959)

  • 1. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.
    Zeng T; Leimkühler S; Koetz J; Wollenberger U
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21487-94. PubMed ID: 26357959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode.
    Frasca S; Rojas O; Salewski J; Neumann B; Stiba K; Weidinger IM; Tiersch B; Leimkühler S; Koetz J; Wollenberger U
    Bioelectrochemistry; 2012 Oct; 87():33-41. PubMed ID: 22209453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance Raman spectroscopic and electrochemical approach.
    Sezer M; Spricigo R; Utesch T; Millo D; Leimkuehler S; Mroginski MA; Wollenberger U; Hildebrandt P; Weidinger IM
    Phys Chem Chem Phys; 2010 Jul; 12(28):7894-903. PubMed ID: 20502841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan-Promoted Direct Electrochemistry of Human Sulfite Oxidase.
    Kalimuthu P; Belaidi AA; Schwarz G; Bernhardt PV
    J Phys Chem B; 2017 Oct; 121(39):9149-9159. PubMed ID: 28872871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct electron transfer of heme- and molybdopterin cofactor-containing chicken liver sulfite oxidase on alkanethiol-modified gold electrodes.
    Ferapontova EE; Ruzgas T; Gorton L
    Anal Chem; 2003 Sep; 75(18):4841-50. PubMed ID: 14674462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A voltammetric study of interdomain electron transfer within sulfite oxidase.
    Elliott SJ; McElhaney AE; Feng C; Enemark JH; Armstrong FA
    J Am Chem Soc; 2002 Oct; 124(39):11612-3. PubMed ID: 12296723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective detection of trace amount of Cu2+ using semiconductor nanoparticles in photoelectrochemical analysis.
    Wang GL; Xu JJ; Chen HY
    Nanoscale; 2010 Jul; 2(7):1112-4. PubMed ID: 20648335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on L-cysteine self-assembled gold electrode.
    Patil B; Kobayashi Y; Fujikawa S; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2014 Feb; 95():15-22. PubMed ID: 24189123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an amperometric sulfite biosensor based on SO(x)/PBNPs/PPY modified ITO electrode.
    Rawal R; Pundir CS
    Int J Biol Macromol; 2012 Nov; 51(4):449-55. PubMed ID: 22705572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells.
    Zeng T; Pankratov D; Falk M; Leimkühler S; Shleev S; Wollenberger U
    Biosens Bioelectron; 2015 Apr; 66():39-42. PubMed ID: 25460879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fullerene C60 modified gold electrode and nanogold modified indium tin oxide electrode for prednisolone determination.
    Goyal RN; Oyama M; Bachheti N; Singh SP
    Bioelectrochemistry; 2009 Feb; 74(2):272-7. PubMed ID: 19028444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the direct electrochemistry of glucose oxidase immobilized on the surface of Au, CdS and ZnS nanostructures.
    Du J; Yu X; Di J
    Biosens Bioelectron; 2012; 37(1):88-93. PubMed ID: 22609554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel 96-well quantitative bioelectrocatalytic analysis platform reveals highly efficient direct electrode regeneration of cytochrome P450 BM3 on indium tin oxide.
    Frank R; Klenner M; Azendorf R; Bartz M; Jahnke HG; Robitzki AA
    Biosens Bioelectron; 2017 Jul; 93():322-329. PubMed ID: 27594699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine.
    Emesh S; Rapson TD; Rajapakshe A; Kappler U; Bernhardt PV; Tollin G; Enemark JH
    Biochemistry; 2009 Mar; 48(10):2156-63. PubMed ID: 19226119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes.
    Ferapontova EE; Shipovskov S; Gorton L
    Biosens Bioelectron; 2007 May; 22(11):2508-15. PubMed ID: 17081743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-electrode architectures for enhanced direct bioelectrocatalysis of pyrroloquinoline quinone-dependent glucose dehydrogenase.
    Sarauli D; Peters K; Xu C; Schulz B; Fattakhova-Rohlfing D; Lisdat F
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17887-93. PubMed ID: 25230089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel ferroceneylazobenzene self-assembled monolayer on an ITO electrode: photochemical and electrochemical behaviors.
    Li C; Ren B; Zhang Y; Cheng Z; Liu X; Tong Z
    Langmuir; 2008 Nov; 24(22):12911-8. PubMed ID: 18928307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode.
    Palanisamy S; Karuppiah C; Chen SM
    Colloids Surf B Biointerfaces; 2014 Feb; 114():164-9. PubMed ID: 24184536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria.
    Ivnitski D; Artyushkova K; Atanassov P
    Bioelectrochemistry; 2008 Nov; 74(1):101-10. PubMed ID: 18571994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoresponsive poly(N-isopropylacrylamide) gel for immobilization of laccase on indium tin oxide electrodes.
    Klis M; Karbarz M; Stojek Z; Rogalski J; Bilewicz R
    J Phys Chem B; 2009 Apr; 113(17):6062-7. PubMed ID: 19348446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.