BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 26357982)

  • 1. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance.
    Su D; Wang C; Ahn HJ; Wang G
    Chemistry; 2013 Aug; 19(33):10884-9. PubMed ID: 23843279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries.
    Xiong Y; Qian J; Cao Y; Ai X; Yang H
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16684-9. PubMed ID: 27311835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechargeable Mg-M (M = Li, Na and K) dual-metal-ion batteries based on a Berlin green cathode and a metallic Mg anode.
    Zhang Y; Shen J; Li X; Chen Z; Cao SA; Li T; Xu F
    Phys Chem Chem Phys; 2019 Sep; 21(36):20269-20275. PubMed ID: 31490519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perylenetetracarboxylic Diimide as Diffusion-Less Electrode Material for High-Rate Organic Na-Ion Batteries.
    Liebl S; Werner D; Apaydin DH; Wielend D; Geistlinger K; Portenkirchner E
    Chemistry; 2020 Dec; 26(72):17559-17566. PubMed ID: 32767398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Metal-Organic Compound as Cathode Material with Superhigh Capacity Achieved by Reversible Cationic and Anionic Redox Chemistry for High-Energy Sodium-Ion Batteries.
    Fang C; Huang Y; Yuan L; Liu Y; Chen W; Huang Y; Chen K; Han J; Liu Q; Huang Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6793-6797. PubMed ID: 28471036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmentally Sustainable Aluminum-Coordinated Poly(tetrahydroxybenzoquinone) as a Promising Cathode for Sodium Ion Batteries.
    Kim HJ; Kim Y; Shim J; Jung KH; Jung MS; Kim H; Lee JC; Lee KT
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3479-3486. PubMed ID: 29298374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Grown Fe
    Li T; Qin A; Yang L; Chen J; Wang Q; Zhang D; Yang H
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19900-19907. PubMed ID: 28537405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azo compounds as a family of organic electrode materials for alkali-ion batteries.
    Luo C; Borodin O; Ji X; Hou S; Gaskell KJ; Fan X; Chen J; Deng T; Wang R; Jiang J; Wang C
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2004-2009. PubMed ID: 29440381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries.
    Fang Y; Liu Q; Xiao L; Ai X; Yang H; Cao Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17977-84. PubMed ID: 26207862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.
    Shakoor RA; Park CS; Raja AA; Shin J; Kahraman R
    Phys Chem Chem Phys; 2016 Feb; 18(5):3929-35. PubMed ID: 26765283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries.
    Hwang JY; Oh SM; Myung ST; Chung KY; Belharouak I; Sun YK
    Nat Commun; 2015 Apr; 6():6865. PubMed ID: 25882619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.
    Kim DM; Kim Y; Arumugam D; Woo SW; Jo YN; Park MS; Kim YJ; Choi NS; Lee KT
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8554-60. PubMed ID: 26967192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries.
    Su D; Wang G
    ACS Nano; 2013 Dec; 7(12):11218-26. PubMed ID: 24206168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na-rich layered Na
    Song S; Kotobuki M; Chen Y; Manzhos S; Xu C; Hu N; Lu L
    Sci Rep; 2017 Mar; 7(1):373. PubMed ID: 28336964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithium Ion Batteries.
    Schon TB; Tilley AJ; Kynaston EL; Seferos DS
    ACS Appl Mater Interfaces; 2017 May; 9(18):15631-15637. PubMed ID: 28430407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aromatic Organic Small-Molecule Material with (020) Crystal Plane Activation for Wide-Temperature and 68000 Cycle Aqueous Calcium-Ion Batteries.
    Qiao F; Wang J; Yu R; Huang M; Zhang L; Yang W; Wang H; Wu J; Zhang L; Jiang Y; An Q
    ACS Nano; 2023 Nov; 17(22):23046-23056. PubMed ID: 37934487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries.
    Xie X; Su D; Chen S; Zhang J; Dou S; Wang G
    Chem Asian J; 2014 Jun; 9(6):1611-7. PubMed ID: 24729583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries.
    Zhang J; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27838-44. PubMed ID: 26618232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.