These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26358156)

  • 1. The influence of mixed salts on the capacity of HIC adsorbers: A predictive correlation to the surface tension and the aggregation temperature.
    Baumgartner K; Amrhein S; Oelmeier SA; Hubbuch J
    Biotechnol Prog; 2016 Mar; 32(2):346-54. PubMed ID: 26358156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of mixed electrolytes on the adsorption of lysozyme, PEG, and PEGylated lysozyme on a hydrophobic interaction chromatography resin.
    Hackemann E; Werner A; Hasse H
    Biotechnol Prog; 2017 Jul; 33(4):1104-1115. PubMed ID: 28371508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive study to protein retention in hydrophobic interaction chromatography.
    Baca M; De Vos J; Bruylants G; Bartik K; Liu X; Cook K; Eeltink S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():182-188. PubMed ID: 27237734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed electrolytes in hydrophobic interaction chromatography.
    Müller E; Vajda J; Josic D; Schröder T; Dabre R; Frey T
    J Sep Sci; 2013 Apr; 36(8):1327-34. PubMed ID: 23520000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-protein interactions and reduced excluded volume increase dynamic binding capacity of dual salt systems in hydrophobic interaction chromatography.
    Jakob LA; Beyer B; Janeiro Ferreira C; Lingg N; Jungbauer A; Tscheließnig R
    J Chromatogr A; 2021 Jul; 1649():462231. PubMed ID: 34038776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.
    Hackemann E; Hasse H
    J Chromatogr A; 2017 Oct; 1521():73-79. PubMed ID: 28947205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling of adsorption isotherms in mixed salt systems in hydrophobic interaction chromatography.
    Hackemann E; Hasse H
    Biotechnol Prog; 2018 Sep; 34(5):1251-1260. PubMed ID: 30009582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.
    Senczuk AM; Klinke R; Arakawa T; Vedantham G; Yigzaw Y
    Biotechnol Bioeng; 2009 Aug; 103(5):930-5. PubMed ID: 19382248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E; Josic D; Schröder T; Moosmann A
    J Chromatogr A; 2010 Jul; 1217(28):4696-703. PubMed ID: 20570270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study and modeling of the influence of mixed electrolytes on adsorption of macromolecules on a hydrophobic resin.
    Werner A; Hasse H
    J Chromatogr A; 2013 Nov; 1315():135-44. PubMed ID: 24099781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between thermal aggregation and stability of lysozyme with salts described by molar surface tension increment: an exceptional propensity of ammonium salts as aggregation suppressor.
    Hirano A; Hamada H; Okubo T; Noguchi T; Higashibata H; Shiraki K
    Protein J; 2007 Sep; 26(6):423-33. PubMed ID: 17503163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-independent hydrophobic displacement chromatography for antibody purification using cyclodextrin as supermolecular displacer.
    Ren J; Yao P; Chen J; Jia L
    J Chromatogr A; 2014 Nov; 1369():98-104. PubMed ID: 25441076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of salt properties with electro-acoustic measurements and their effect on dynamic binding capacity in hydrophobic interaction chromatography.
    Müller E; Faude A
    J Chromatogr A; 2008 Jan; 1177(2):215-25. PubMed ID: 18037423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.
    Baumann P; Baumgartner K; Hubbuch J
    J Chromatogr A; 2015 May; 1396():77-85. PubMed ID: 25911386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.
    Mehta CM; White ET; Litster JD
    Biotechnol Prog; 2013; 29(5):1203-11. PubMed ID: 23804362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
    Dutcher CS; Wexler AS; Clegg SL
    J Phys Chem A; 2010 Nov; 114(46):12216-30. PubMed ID: 21043484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput protein precipitation and hydrophobic interaction chromatography: salt effects and thermodynamic interrelation.
    Nfor BK; Hylkema NN; Wiedhaup KR; Verhaert PD; van der Wielen LA; Ottens M
    J Chromatogr A; 2011 Dec; 1218(49):8958-73. PubMed ID: 21868020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions.
    Parmar AS; Muschol M
    Biophys J; 2009 Jul; 97(2):590-8. PubMed ID: 19619474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of monoclonal antibodies by hydrophobic interaction chromatography under no-salt conditions.
    Ghose S; Tao Y; Conley L; Cecchini D
    MAbs; 2013; 5(5):795-800. PubMed ID: 23884181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein interactions in complex cosolvent solutions.
    Javid N; Vogtt K; Krywka C; Tolan M; Winter R
    Chemphyschem; 2007 Apr; 8(5):679-89. PubMed ID: 17328089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.