These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26358156)

  • 21. Evaluation of selectivity changes in HIC systems using a preferential interaction based analysis.
    Xia F; Nagrath D; Garde S; Cramer SM
    Biotechnol Bioeng; 2004 Aug; 87(3):354-63. PubMed ID: 15281110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pH changes on water release values in hydrophobic interaction chromatographic systems.
    Xia F; Nagrath D; Cramer SM
    J Chromatogr A; 2005 Jun; 1079(1-2):229-35. PubMed ID: 16038309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of a novel dual-function strong cation exchange/hydrophobic interaction chromatography stationary phase for protein separation.
    Zhao K; Yang L; Wang X; Bai Q; Yang F; Wang F
    Talanta; 2012 Aug; 98():86-94. PubMed ID: 22939132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH.
    Grigsby JJ; Blanch HW; Prausnitz JM
    Biophys Chem; 2001 Jul; 91(3):231-43. PubMed ID: 11551435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of mixed salts on retention behavior of model proteins in cation exchange chromatography.
    Fuchs T; Pälchen A; Jupke A
    J Chromatogr A; 2023 May; 1696():463968. PubMed ID: 37054639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loading, stationary phase, and salt effects during hydrophobic interaction chromatography: alpha-lactalbumin is stabilized at high loadings.
    Fogle JL; O'Connell JP; Fernandez EJ
    J Chromatogr A; 2006 Jul; 1121(2):209-18. PubMed ID: 16690064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PEGylated protein separation using different hydrophobic interaction supports: Conventional and monolithic supports.
    Mayolo-Deloisa K; González-Valdez J; Rito-Palomares M
    Biotechnol Prog; 2016 May; 32(3):702-7. PubMed ID: 26918888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salts employed in hydrophobic interaction chromatography can change protein structure - insights from protein-ligand interaction thermodynamics, circular dichroism spectroscopy and small angle X-ray scattering.
    Komaromy AZ; Kulsing C; Boysen RI; Hearn MT
    Biotechnol J; 2015 Mar; 10(3):417-26. PubMed ID: 25690783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binary and ternary salt gradients in hydrophobic-interaction chromatography of proteins.
    el Rassi Z; De Ocampo LF; Bacolod MD
    J Chromatogr; 1990 Jan; 499():141-52. PubMed ID: 2324205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aggregation of PEGylated liposomes driven by hydrophobic forces.
    Bozó T; Mészáros T; Mihály J; Bóta A; Kellermayer MSZ; Szebeni J; Kálmán B
    Colloids Surf B Biointerfaces; 2016 Nov; 147():467-474. PubMed ID: 27588427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Salt effects on the picosecond dynamics of lysozyme hydration water investigated by terahertz time-domain spectroscopy and an insight into the Hofmeister series for protein stability and solubility.
    Aoki K; Shiraki K; Hattori T
    Phys Chem Chem Phys; 2016 Jun; 18(22):15060-9. PubMed ID: 27193313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein.
    Lin FY; Chen WY; Hearn MT
    Anal Chem; 2001 Aug; 73(16):3875-83. PubMed ID: 11534710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of salt effects on protein phase behavior by HIC retention and thermal stability.
    Baumgartner K; Großhans S; Schütz J; Suhm S; Hubbuch J
    J Pharm Biomed Anal; 2016 Sep; 128():216-225. PubMed ID: 27268946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Salt-mediated retention of proteins in hydrophobic-interaction chromatography. Application of solvophobic theory.
    Melander WR; Corradini D; Horváth C
    J Chromatogr; 1984 Dec; 317():67-85. PubMed ID: 6530455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.
    Déjugnat C; Dufrêche JF; Zemb T
    Phys Chem Chem Phys; 2011 Apr; 13(15):6914-24. PubMed ID: 21412527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of salts on protein interactions at interfaces of amphiphilic polymers and adsorbents.
    Oscarsson S
    J Chromatogr B Biomed Appl; 1995 Apr; 666(1):21-31. PubMed ID: 7544669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual salt mixtures in mixed mode chromatography with an immobilized tryptophan ligand influence the removal of aggregated monoclonal antibodies.
    Vajda J; Mueller E; Bahret E
    Biotechnol J; 2014 Apr; 9(4):555-65. PubMed ID: 24421277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography.
    Zhao G; Peng G; Li F; Shi Q; Sun Y
    J Chromatogr A; 2008 Nov; 1211(1-2):90-8. PubMed ID: 18947830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic modelling of hydrophobic interaction chromatography of biomolecules in the presence of salt.
    Mirani MR; Rahimpour F
    J Chromatogr A; 2015 Nov; 1422():170-177. PubMed ID: 26493472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The inverse and direct Hofmeister series for lysozyme.
    Zhang Y; Cremer PS
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15249-53. PubMed ID: 19706429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.