BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26358292)

  • 1. Misfolded opsin mutants display elevated β-sheet structure.
    Miller LM; Gragg M; Kim TG; Park PS
    FEBS Lett; 2015 Oct; 589(20 Pt B):3119-25. PubMed ID: 26358292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misfolded rhodopsin mutants display variable aggregation properties.
    Gragg M; Park PS
    Biochim Biophys Acta Mol Basis Dis; 2018 Sep; 1864(9 Pt B):2938-2948. PubMed ID: 29890221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of misfolded rhodopsin aggregates in cells by Förster resonance energy transfer.
    Gragg M; Park PS
    Methods Cell Biol; 2019; 149():87-105. PubMed ID: 30616829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wild-type opsin does not aggregate with a misfolded opsin mutant.
    Gragg M; Kim TG; Howell S; Park PS
    Biochim Biophys Acta; 2016 Aug; 1858(8):1850-9. PubMed ID: 27117643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening assays to identify small molecules preventing photoreceptor degeneration caused by the rhodopsin P23H mutation.
    Chen Y; Tang H
    Methods Mol Biol; 2015; 1271():369-90. PubMed ID: 25697536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa.
    Kaushal S; Khorana HG
    Biochemistry; 1994 May; 33(20):6121-8. PubMed ID: 8193125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calnexin improves the folding efficiency of mutant rhodopsin in the presence of pharmacological chaperone 11-cis-retinal.
    Noorwez SM; Sama RR; Kaushal S
    J Biol Chem; 2009 Nov; 284(48):33333-42. PubMed ID: 19801547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function.
    Opefi CA; South K; Reynolds CA; Smith SO; Reeves PJ
    J Biol Chem; 2013 Nov; 288(47):33912-33926. PubMed ID: 24106275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa.
    Mendes HF; Cheetham ME
    Hum Mol Genet; 2008 Oct; 17(19):3043-54. PubMed ID: 18635576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered functionality in rhodopsin point mutants associated with retinitis pigmentosa.
    Andrés A; Garriga P; Manyosa J
    Biochem Biophys Res Commun; 2003 Mar; 303(1):294-301. PubMed ID: 12646201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinitis pigmentosa rhodopsin mutations L125R and A164V perturb critical interhelical interactions: new insights through compensatory mutations and crystal structure analysis.
    Stojanovic A; Hwang I; Khorana HG; Hwa J
    J Biol Chem; 2003 Oct; 278(40):39020-8. PubMed ID: 12871954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration.
    Colley NJ; Cassill JA; Baker EK; Zuker CS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):3070-4. PubMed ID: 7708777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in rhodopsin: Mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants.
    Hwa J; Klein-Seetharaman J; Khorana HG
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4872-6. PubMed ID: 11320236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa.
    Noorwez SM; Kuksa V; Imanishi Y; Zhu L; Filipek S; Palczewski K; Kaushal S
    J Biol Chem; 2003 Apr; 278(16):14442-14450. PubMed ID: 12566452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of rhodopsin mutants in mouse models of autosomal dominant retinitis pigmentosa.
    Vasudevan S; Senapati S; Pendergast M; Park PS
    Nat Commun; 2024 Feb; 15(1):1451. PubMed ID: 38365903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control.
    Athanasiou D; Bevilacqua D; Aguila M; McCulley C; Kanuga N; Iwawaki T; Chapple JP; Cheetham ME
    Hum Mol Genet; 2014 Dec; 23(24):6594-606. PubMed ID: 25055872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clearance of Rhodopsin(P23H) aggregates requires the ERAD effector VCP.
    Griciuc A; Aron L; Piccoli G; Ueffing M
    Biochim Biophys Acta; 2010 Mar; 1803(3):424-34. PubMed ID: 20097236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.