These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26358530)

  • 41. Is there room for improving the nutraceutical composition of apple?
    Farneti B; Masuero D; Costa F; Magnago P; Malnoy M; Costa G; Vrhovsek U; Mattivi F
    J Agric Food Chem; 2015 Mar; 63(10):2750-9. PubMed ID: 25723891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and characterization of miRNAs and their targets, including a novel miRNA-targeted NBS-LRR protein class gene in apple (Golden Delicious).
    Ma C; Lu Y; Bai S; Zhang W; Duan X; Meng D; Wang Z; Wang A; Zhou Z; Li T
    Mol Plant; 2014 Jan; 7(1):218-30. PubMed ID: 23880633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple.
    Weigl K; Wenzel S; Flachowsky H; Peil A; Hanke MV
    Plant Biotechnol J; 2015 Feb; 13(2):246-58. PubMed ID: 25370729
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MicroRNAs in fruit trees: discovery, diversity and future research directions.
    Solofoharivelo MC; van der Walt AP; Stephan D; Burger JT; Murray SL
    Plant Biol (Stuttg); 2014 Sep; 16(5):856-65. PubMed ID: 24750383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation.
    Vimolmangkang S; Zheng D; Han Y; Khan MA; Soria-Guerra RE; Korban SS
    Gene; 2014 Jan; 534(1):78-87. PubMed ID: 24140126
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life.
    Wu B; Shen F; Chen CJ; Liu L; Wang X; Zheng WY; Deng Y; Wang T; Huang ZY; Xiao C; Zhou Q; Wang Y; Wu T; Xu XF; Han ZH; Zhang XZ
    Plant Genome; 2021 Mar; 14(1):e20084. PubMed ID: 33605090
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Involvement of Auxin and Brassinosteroid in Dwarfism of Autotetraploid Apple (Malus × domestica).
    Ma Y; Xue H; Zhang L; Zhang F; Ou C; Wang F; Zhang Z
    Sci Rep; 2016 May; 6():26719. PubMed ID: 27216878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin.
    Ban Y; Honda C; Hatsuyama Y; Igarashi M; Bessho H; Moriguchi T
    Plant Cell Physiol; 2007 Jul; 48(7):958-70. PubMed ID: 17526919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening.
    Ireland HS; Yao JL; Tomes S; Sutherland PW; Nieuwenhuizen N; Gunaseelan K; Winz RA; David KM; Schaffer RJ
    Plant J; 2013 Mar; 73(6):1044-56. PubMed ID: 23236986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation of high-quality RNA from apple (Malus domestica) fruit.
    Asif M; Trivedi P; Solomos T; Tucker M
    J Agric Food Chem; 2006 Jul; 54(15):5227-9. PubMed ID: 16848498
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic organization and expression analysis of a farnesyl diphosphate synthase gene (FPPS2) in apples (Malus domestica Borkh.).
    Yuan K; Wang C; Xin L; Zhang A; Ai C
    Gene; 2013 Jul; 524(2):90-4. PubMed ID: 23644140
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Uncovering co-expression gene network modules regulating fruit acidity in diverse apples.
    Bai Y; Dougherty L; Cheng L; Zhong GY; Xu K
    BMC Genomics; 2015 Aug; 16(1):612. PubMed ID: 26276125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical characterisation of MdCXE1, a carboxylesterase from apple that is expressed during fruit ripening.
    Souleyre EJ; Marshall SD; Oakeshott JG; Russell RJ; Plummer KM; Newcomb RD
    Phytochemistry; 2011 May; 72(7):564-71. PubMed ID: 21315388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic clues to the origin of the apple.
    Harris SA; Robinson JP; Juniper BE
    Trends Genet; 2002 Aug; 18(8):426-30. PubMed ID: 12142012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New insights for estimating the genetic value of segregating apple progenies for irregular bearing during the first years of tree production.
    Durand JB; Guitton B; Peyhardi J; Holtz Y; Guédon Y; Trottier C; Costes E
    J Exp Bot; 2013 Nov; 64(16):5099-113. PubMed ID: 24106292
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh.
    Binnie JE; McManus MT
    Phytochemistry; 2009 Feb; 70(3):348-60. PubMed ID: 19223050
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.
    Amyotte B; Bowen AJ; Banks T; Rajcan I; Somers DJ
    PLoS One; 2017; 12(2):e0171710. PubMed ID: 28231290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Apple fruit copper amine oxidase isoforms: peroxisomal MdAO1 prefers diamines as substrates, whereas extracellular MdAO2 exclusively utilizes monoamines.
    Zarei A; Trobacher CP; Cooke AR; Meyers AJ; Hall JC; Shelp BJ
    Plant Cell Physiol; 2015 Jan; 56(1):137-47. PubMed ID: 25378687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.).
    Coart E; VAN Glabeke S; DE Loose M; Larsen AS; Roldán-Ruiz I
    Mol Ecol; 2006 Jul; 15(8):2171-82. PubMed ID: 16780433
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    Wang N; Jiang S; Zhang Z; Fang H; Xu H; Wang Y; Chen X
    Hortic Res; 2018; 5():70. PubMed ID: 30345062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.