These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 26358580)

  • 21. Effects of alveolated duct structure on aerosol kinetics. II. Gravitational sedimentation and inertial impaction.
    Tsuda A; Butler JP; Fredberg JJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2510-6. PubMed ID: 7928877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of anisotropic expansion for pulmonary acinar aerosol deposition.
    Hofemeier P; Sznitman J
    J Biomech; 2016 Oct; 49(14):3543-3548. PubMed ID: 27614613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The simultaneous role of an alveolus as flow mixer and flow feeder for the deposition of inhaled submicron particles.
    Henry FS; Haber S; Haberthür D; Filipovic N; Milasinovic D; Schittny JC; Tsuda A
    J Biomech Eng; 2012 Dec; 134(12):121001. PubMed ID: 23363203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry.
    Oakes JM; Day S; Weinstein SJ; Robinson RJ
    J Biomech Eng; 2010 Feb; 132(2):021008. PubMed ID: 20370245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes.
    Lalas A; Nousias S; Kikidis D; Lalos A; Arvanitis G; Sougles C; Moustakas K; Votis K; Verbanck S; Usmani O; Tzovaras D
    BMC Med Inform Decis Mak; 2017 Dec; 17(Suppl 3):173. PubMed ID: 29297393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung.
    Koullapis PG; Hofemeier P; Sznitman J; Kassinos SC
    Eur J Pharm Sci; 2018 Feb; 113():132-144. PubMed ID: 28917963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Airflow and Particle Deposition in Acinar Models with Interalveolar Septal Walls and Different Alveolar Numbers.
    Xi J; Talaat M; Tanbour H; Talaat K
    Comput Math Methods Med; 2018; 2018():3649391. PubMed ID: 30356402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical simulation of airflow and microparticle deposition in a synchrotron micro-CT-based pulmonary acinus model.
    Sera T; Uesugi K; Yagi N; Yokota H
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1427-35. PubMed ID: 24821393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two- and three-dimensional simulations of aerosol transport and deposition in alveolar zone of human lung.
    Darquenne C; Paiva M
    J Appl Physiol (1985); 1996 Apr; 80(4):1401-14. PubMed ID: 8926273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus.
    Sznitman J; Heimsch F; Heimsch T; Rusch D; Rösgen T
    J Biomech Eng; 2007 Oct; 129(5):658-65. PubMed ID: 17887891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles.
    Ostrovski Y; Hofemeier P; Sznitman J
    Int J Nanomedicine; 2016; 11():3385-95. PubMed ID: 27547034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeting inhaled fibers to the pulmonary acinus: Opportunities for augmented delivery from in silico simulations.
    Shachar-Berman L; Ostrovski Y; Koshiyama K; Wada S; Kassinos SC; Sznitman J
    Eur J Pharm Sci; 2019 Sep; 137():105003. PubMed ID: 31302212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerosols in healthy and emphysematous in silico pulmonary acinar rat models.
    Oakes JM; Hofemeier P; Vignon-Clementel IE; Sznitman J
    J Biomech; 2016 Jul; 49(11):2213-2220. PubMed ID: 26726781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Microfluidic Model of Biomimetically Breathing Pulmonary Acinar Airways.
    Fishler R; Sznitman J
    J Vis Exp; 2016 May; (111):. PubMed ID: 27214269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics.
    Sznitman J
    Chem Rev; 2022 Apr; 122(7):7182-7204. PubMed ID: 34964615
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aerosol transport and deposition in the rhythmically expanding pulmonary acinus.
    Tsuda A; Henry FS; Otani Y; Haber S; Butler JP
    J Aerosol Med; 1996; 9(3):389-408. PubMed ID: 10163663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particle deposition in human respiratory system: deposition of concentrated hygroscopic aerosols.
    Varghese SK; Gangamma S
    Inhal Toxicol; 2009 Jun; 21(7):619-30. PubMed ID: 19459776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Penetration of inhaled aerosols in the bronchial tree.
    Miguel AF
    Med Eng Phys; 2017 Jun; 44():25-31. PubMed ID: 28373015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli.
    Balásházy I; Hofmann W; Farkas A; Madas BG
    Inhal Toxicol; 2008 Apr; 20(6):611-21. PubMed ID: 18444013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.