These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26358623)

  • 1. Control of plasmonic nanoantennas by reversible metal-insulator transition.
    Abate Y; Marvel RE; Ziegler JI; Gamage S; Javani MH; Stockman MI; Haglund RF
    Sci Rep; 2015 Sep; 5():13997. PubMed ID: 26358623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.
    Savaliya PB; Thomas A; Dua R; Dhawan A
    Opt Express; 2017 Oct; 25(20):23755-23772. PubMed ID: 29041327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide.
    Muskens OL; Bergamini L; Wang Y; Gaskell JM; Zabala N; de Groot CH; Sheel DW; Aizpurua J
    Light Sci Appl; 2016 Oct; 5(10):e16173. PubMed ID: 30167127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nanoantennas on VO
    Gupta N; Savaliya PB; Dhawan A
    Opt Express; 2020 Sep; 28(19):27476-27494. PubMed ID: 32988041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active directional switching of surface plasmon polaritons using a phase transition material.
    Kim SJ; Yun H; Park K; Hong J; Yun JG; Lee K; Kim J; Jeong SJ; Mun SE; Sung J; Lee YW; Lee B
    Sci Rep; 2017 Mar; 7():43723. PubMed ID: 28262702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of Nanoscale Light Confinement in Plasmonic Nanoantennas by Brownian Optical Microscopy.
    Lee YU; Wisna GBM; Hsu SW; Zhao J; Lei M; Li S; Tao AR; Liu Z
    ACS Nano; 2020 Jun; 14(6):7666-7672. PubMed ID: 32438800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotextured Dynamics of a Light-Induced Phase Transition in VO
    Sternbach AJ; Ruta FL; Shi Y; Slusar T; Schalch J; Duan G; McLeod AS; Zhang X; Liu M; Millis AJ; Kim HT; Chen LQ; Averitt RD; Basov DN
    Nano Lett; 2021 Nov; 21(21):9052-9060. PubMed ID: 34724612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Entropy-Driven Defect Migration and Insulator-Metal Transition Suppression in VO
    Zhang R; Yang W; Zhang L; Huang T; Niu L; Xu P; Chen Z; Chen X; Hu W; Dai N
    Chemphyschem; 2023 Jun; 24(11):e202300059. PubMed ID: 36880971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized Triggering of the Insulator-Metal Transition in VO
    Bohaichuk SM; Muñoz Rojo M; Pitner G; McClellan CJ; Lian F; Li J; Jeong J; Samant MG; Parkin SSP; Wong HP; Pop E
    ACS Nano; 2019 Oct; 13(10):11070-11077. PubMed ID: 31393698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams.
    Huber MA; Plankl M; Eisele M; Marvel RE; Sandner F; Korn T; Schüller C; Haglund RF; Huber R; Cocker TL
    Nano Lett; 2016 Feb; 16(2):1421-7. PubMed ID: 26771106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steerable plasmonic nanoantennas: active steering of radiation patterns using phase change materials.
    Savaliya PB; Gupta N; Dhawan A
    Opt Express; 2019 Oct; 27(22):31567-31586. PubMed ID: 31684389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic antennas as design elements for coherent ultrafast nanophotonics.
    Brinks D; Castro-Lopez M; Hildner R; van Hulst NF
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18386-90. PubMed ID: 24163355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Manipulation of THz Waves Enabled by Phase-Transition VO
    Lu C; Lu Q; Gao M; Lin Y
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insulator-metal transition in substrate-independent VO
    Taha M; Walia S; Ahmed T; Headland D; Withayachumnankul W; Sriram S; Bhaskaran M
    Sci Rep; 2017 Dec; 7(1):17899. PubMed ID: 29263388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic-plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing.
    Trevino J; Walsh GF; Pecora EF; Boriskina SV; Dal Negro L
    Opt Lett; 2013 Nov; 38(22):4861-3. PubMed ID: 24322151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.
    Muhammed MA; Döblinger M; Rodríguez-Fernández J
    J Am Chem Soc; 2015 Sep; 137(36):11666-77. PubMed ID: 26332445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative mapping of phase coexistence in Mott-Peierls insulator during electronic and thermally driven phase transition.
    Madan H; Jerry M; Pogrebnyakov A; Mayer T; Datta S
    ACS Nano; 2015 Feb; 9(2):2009-17. PubMed ID: 25632880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
    Song J; Zhou W
    Nano Lett; 2018 Jul; 18(7):4409-4416. PubMed ID: 29923727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films.
    Beebe M; Wang L; Madaras SE; Klopf JM; Li Z; Brantley D; Heimburger M; Wincheski RA; Kittiwatanakul S; Lu J; Wolf SA; Lukaszew RA
    Opt Express; 2015 May; 23(10):13222-9. PubMed ID: 26074574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.