These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26358713)
1. Automated Assessment of Patients' Self-Narratives for Posttraumatic Stress Disorder Screening Using Natural Language Processing and Text Mining. He Q; Veldkamp BP; Glas CA; de Vries T Assessment; 2017 Mar; 24(2):157-172. PubMed ID: 26358713 [TBL] [Abstract][Full Text] [Related]
2. Screening for posttraumatic stress disorder using verbal features in self narratives: a text mining approach. He Q; Veldkamp BP; de Vries T Psychiatry Res; 2012 Aug; 198(3):441-7. PubMed ID: 22464046 [TBL] [Abstract][Full Text] [Related]
3. Identifying women with postdelivery posttraumatic stress disorder using natural language processing of personal childbirth narratives. Bartal A; Jagodnik KM; Chan SJ; Babu MS; Dekel S Am J Obstet Gynecol MFM; 2023 Mar; 5(3):100834. PubMed ID: 36509356 [TBL] [Abstract][Full Text] [Related]
4. Construction accident narrative classification: An evaluation of text mining techniques. Goh YM; Ubeynarayana CU Accid Anal Prev; 2017 Nov; 108():122-130. PubMed ID: 28865927 [TBL] [Abstract][Full Text] [Related]
5. Natural language processing and machine learning to enable automatic extraction and classification of patients' smoking status from electronic medical records. Caccamisi A; Jørgensen L; Dalianis H; Rosenlund M Ups J Med Sci; 2020 Nov; 125(4):316-324. PubMed ID: 32696698 [TBL] [Abstract][Full Text] [Related]
6. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051 [TBL] [Abstract][Full Text] [Related]
7. Using natural language processing to automatically classify written self-reported narratives by patients with migraine or cluster headache. Vandenbussche N; Van Hee C; Hoste V; Paemeleire K J Headache Pain; 2022 Sep; 23(1):129. PubMed ID: 36180844 [TBL] [Abstract][Full Text] [Related]
8. Automatically determining cause of death from verbal autopsy narratives. Jeblee S; Gomes M; Jha P; Rudzicz F; Hirst G BMC Med Inform Decis Mak; 2019 Jul; 19(1):127. PubMed ID: 31288814 [TBL] [Abstract][Full Text] [Related]
9. Realizing the Power of Text Mining and Natural Language Processing for Analyzing Patient Safety Event Narratives: The Challenges and Path Forward. Fong A J Patient Saf; 2021 Dec; 17(8):e834-e836. PubMed ID: 34852413 [TBL] [Abstract][Full Text] [Related]
10. Classifying disease outbreak reports using n-grams and semantic features. Conway M; Doan S; Kawazoe A; Collier N Int J Med Inform; 2009 Dec; 78(12):e47-58. PubMed ID: 19447070 [TBL] [Abstract][Full Text] [Related]
11. Text mining to improve screening for trauma-related symptoms in a global sample. Marengo D; Hoeboer CM; Veldkamp BP; ; Olff M Psychiatry Res; 2022 Oct; 316():114753. PubMed ID: 35940089 [TBL] [Abstract][Full Text] [Related]
12. Early recognition of multiple sclerosis using natural language processing of the electronic health record. Chase HS; Mitrani LR; Lu GG; Fulgieri DJ BMC Med Inform Decis Mak; 2017 Feb; 17(1):24. PubMed ID: 28241760 [TBL] [Abstract][Full Text] [Related]
13. Rule-based Cervical Spine Defect Classification Using Medical Narratives. Deng Y; Groll MJ; Denecke K Stud Health Technol Inform; 2015; 216():1038. PubMed ID: 26262337 [TBL] [Abstract][Full Text] [Related]
14. Text mining approach to predict hospital admissions using early medical records from the emergency department. Lucini FR; Fogliatto FS; da Silveira GJC; Neyeloff JL; Anzanello MJ; Kuchenbecker RS; Schaan BD Int J Med Inform; 2017 Apr; 100():1-8. PubMed ID: 28241931 [TBL] [Abstract][Full Text] [Related]
15. Identifying Patients with Depression Using Free-text Clinical Documents. Zhou L; Baughman AW; Lei VJ; Lai KH; Navathe AS; Chang F; Sordo M; Topaz M; Zhong F; Murrali M; Navathe S; Rocha RA Stud Health Technol Inform; 2015; 216():629-33. PubMed ID: 26262127 [TBL] [Abstract][Full Text] [Related]
16. Text mining to support abstract screening for knowledge syntheses: a semi-automated workflow. Pham B; Jovanovic J; Bagheri E; Antony J; Ashoor H; Nguyen TT; Rios P; Robson R; Thomas SM; Watt J; Straus SE; Tricco AC Syst Rev; 2021 May; 10(1):156. PubMed ID: 34039433 [TBL] [Abstract][Full Text] [Related]
17. Text mining of verbal autopsy narratives to extract mortality causes and most prevalent diseases using natural language processing. Mapundu MT; Kabudula CW; Musenge E; Olago V; Celik T PLoS One; 2024; 19(9):e0308452. PubMed ID: 39298425 [TBL] [Abstract][Full Text] [Related]
18. Assessing the Heterogeneity of Complaints Related to Tinnitus and Hyperacusis from an Unsupervised Machine Learning Approach: An Exploratory Study. Palacios G; Noreña A; Londero A Audiol Neurootol; 2020; 25(4):174-189. PubMed ID: 32062654 [TBL] [Abstract][Full Text] [Related]
19. Using natural language processing to link patients' narratives to visual capabilities and sentiments. He D; Chung STL Optom Vis Sci; 2024 Jun; 101(6):379-387. PubMed ID: 38990236 [TBL] [Abstract][Full Text] [Related]
20. Evaluating Patients' Experiences with Healthcare Services: Extracting Domain and Language-Specific Information from Free-Text Narratives. Jacennik B; Zawadzka-Gosk E; Moreira JP; Glinkowski WM Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]