These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26359399)

  • 1. Stress orientations in subduction zones and the strength of subduction megathrust faults.
    Hardebeck JL
    Science; 2015 Sep; 349(6253):1213-6. PubMed ID: 26359399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strength of stick-slip and creeping subduction megathrusts from heat flow observations.
    Gao X; Wang K
    Science; 2014 Aug; 345(6200):1038-41. PubMed ID: 25170149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weakening Mechanisms in a Basalt-Hosted Subduction Megathrust Fault Segment, Southern Alaska.
    Braden Z; Behr WM
    J Geophys Res Solid Earth; 2021 Sep; 126(9):e2021JB022039. PubMed ID: 35865263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip.
    Gao X; Wang K
    Nature; 2017 Mar; 543(7645):416-419. PubMed ID: 28264194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slab2, a comprehensive subduction zone geometry model.
    Hayes GP; Moore GL; Portner DE; Hearne M; Flamme H; Furtney M; Smoczyk GM
    Science; 2018 Oct; 362(6410):58-61. PubMed ID: 30093602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex.
    Dielforder A; Vollstaedt H; Vennemann T; Berger A; Herwegh M
    Nat Commun; 2015 Jun; 6():7504. PubMed ID: 26105966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seismic evidence for megathrust fault-valve behavior during episodic tremor and slip.
    Gosselin JM; Audet P; Estève C; McLellan M; Mosher SG; Schaeffer AJ
    Sci Adv; 2020 Jan; 6(4):eaay5174. PubMed ID: 32010787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.
    McCaffrey R; Goldfinger C
    Science; 1995 Feb; 267(5199):856-9. PubMed ID: 17813913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascadia megathrust earthquake rupture model constrained by geodetic fault locking.
    Li D; Liu Y
    Philos Trans A Math Phys Eng Sci; 2021 May; 379(2196):20200135. PubMed ID: 33715408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subduction intraslab-interface fault interactions in the 2022
    Shelly DR; Goldberg DE; Materna KZ; Skoumal RJ; Hardebeck JL; Yoon CE; Yeck WL; Earle PS
    Sci Adv; 2024 Mar; 10(10):eadl1226. PubMed ID: 38446891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earthquake swarms and slow slip on a sliver fault in the Mexican subduction zone.
    Fasola SL; Brudzinski MR; Holtkamp SG; Graham SE; Cabral-Cano E
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7198-7206. PubMed ID: 30910959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-driven fluid flow controls long-term megathrust strength and deep accretionary dynamics.
    Menant A; Angiboust S; Gerya T
    Sci Rep; 2019 Jul; 9(1):9714. PubMed ID: 31273309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slip on 'weak' faults by the rotation of regional stress in the fracture damage zone.
    Faulkner DR; Mitchell TM; Healy D; Heap MJ
    Nature; 2006 Dec; 444(7121):922-5. PubMed ID: 17167484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.
    Calvert AJ
    Nature; 2004 Mar; 428(6979):163-7. PubMed ID: 15014496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change of deep subduction seismicity after a large megathrust earthquake.
    Gardonio B; Marsan D; Bodin T; Socquet A; Durand S; Radiguet M; Ricard Y; Schubnel A
    Nat Commun; 2024 Jan; 15(1):60. PubMed ID: 38167252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow frictional healing explains recurring slow slip events.
    Shreedharan S; Saffer D; Wallace LM; Williams C
    Science; 2023 Feb; 379(6633):712-717. PubMed ID: 36795827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the seismic potential of the Indo-Burman megathrust.
    Vorobieva I; Gorshkov A; Mandal P
    Sci Rep; 2021 Oct; 11(1):21200. PubMed ID: 34707146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What's down there? The structures, materials and environment of deep-seated slow slip and tremor.
    Behr WM; Bürgmann R
    Philos Trans A Math Phys Eng Sci; 2021 Mar; 379(2193):20200218. PubMed ID: 33517877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of episodic slow slip on seismicity and stress near a subduction-zone megathrust.
    Kita S; Houston H; Yabe S; Tanaka S; Asano Y; Shibutani T; Suda N
    Nat Commun; 2021 Dec; 12(1):7253. PubMed ID: 34934061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone.
    Yokota Y; Ishikawa T; Watanabe S; Tashiro T; Asada A
    Nature; 2016 Jun; 534(7607):374-7. PubMed ID: 27281197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.