These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26359421)

  • 1. Melatonin: Free Radicals and Metabolites Resulting by Emission and Consumption of Solvated Electrons (eaq-): Reaction Mechanisms.
    Kneidinger H; Mitulovic G; Hartmann J; Quint RM; Getoff N
    In Vivo; 2015; 29(5):605-9. PubMed ID: 26359421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticosterone metabolites originating as a consequence of solvated electron (e(-)aq) emission.
    Brenn E; Mitulović G; Quint RM; Getoff N
    In Vivo; 2014; 28(5):879-84. PubMed ID: 25189903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation and properties of the melatonin radical: a photolysis study of melatonin with 248 nm laser light.
    He H; Lin M; Han Z; Muroya Y; Kudo H; Katsumura Y
    Org Biomol Chem; 2005 Apr; 3(8):1568-74. PubMed ID: 15827658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine: effect of concentration and pH on the electron emission. Reaction mechanisms.
    Getoff N; Brenn E; Ying S
    In Vivo; 2012; 26(1):107-11. PubMed ID: 22210723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of progesterone on the electron emission and degradation of testosterone.
    Getoff N; Schittl H; Gerschpacher M; Hartmann J; Danielova I; Quint RM
    Gynecol Endocrinol; 2011 Dec; 27(12):1077-83. PubMed ID: 21480767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse radiolysis studies of melatonin and chloromelatonin.
    Roberts JE; Hu DN; Wishart JF
    J Photochem Photobiol B; 1998 Feb; 42(2):125-32. PubMed ID: 9540219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron emission from photo-excited testosterone in water-ethanol solution.
    Getoff N; Schittl H; Hartmann J; Quint RM
    J Photochem Photobiol B; 2009 Mar; 94(3):179-82. PubMed ID: 19124256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK) with the tyrosine side-chain fragment, 4-ethylphenol.
    Nowak A; Rahman H; Heer C; Schueth A; Laatsch H; Hardeland R
    Redox Rep; 2008; 13(3):102-8. PubMed ID: 18544227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormones: electron emission, communication, mutual interaction, regeneration, metabolites, carcinogenesis and receptor action.
    Getoff N
    Horm Mol Biol Clin Investig; 2012 Dec; 12(1):363-75. PubMed ID: 25436696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin-induced intracellular electrons are the mechanism for their well-known beneficial effects: a review.
    Getoff N
    Nutrition; 2013 Apr; 29(4):597-604. PubMed ID: 23306138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin scavenges phenylglyoxylic ketyl radicals.
    Sersen F; Vencel T; Annus J
    Gen Physiol Biophys; 2004 Dec; 23(4):505-8. PubMed ID: 15815084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New findings concerning the mutual action of hormones and receptors.
    Getoff N; Steinbrecher M
    In Vivo; 2012; 26(5):819-22. PubMed ID: 22949595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c: electron emission, photodegradation and mutual interaction with vitamin C.
    Getoff N; Walder G
    In Vivo; 2012; 26(1):129-34. PubMed ID: 22210726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones.
    Rosen J; Than NN; Koch D; Poeggeler B; Laatsch H; Hardeland R
    J Pineal Res; 2006 Nov; 41(4):374-81. PubMed ID: 17014695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): scavenging of free radicals and prevention of protein destruction.
    Ressmeyer AR; Mayo JC; Zelosko V; Sáinz RM; Tan DX; Poeggeler B; Antolín I; Zsizsik BK; Reiter RJ; Hardeland R
    Redox Rep; 2003; 8(4):205-13. PubMed ID: 14599344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adrenaline: communication by electron emission. Effect of concentration and temperature. Product analysis.
    Getoff N; Huber C; Hartmann J; Huber JC; Quint RM
    Horm Mol Biol Clin Investig; 2010 Aug; 2(2):249-255. PubMed ID: 21347200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin: Nature's most versatile biological signal?
    Pandi-Perumal SR; Srinivasan V; Maestroni GJ; Cardinali DP; Poeggeler B; Hardeland R
    FEBS J; 2006 Jul; 273(13):2813-38. PubMed ID: 16817850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of tryptophan and related compounds with oxygen- and carbon-centered radicals.
    Sverdlov RL; Brinkevich SD; Shadyro OI
    Free Radic Res; 2014 Oct; 48(10):1200-5. PubMed ID: 25030296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse Radiolysis Using Very-high-energy Ions for Optimizing Cancer Therapy.
    Getoff N
    In Vivo; 2016; 30(2):119-21. PubMed ID: 26912822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrated electron-initiated main-chain scission in peptides: an e.s.r. and spin-trapping study.
    Rustgi S; Riesz P
    Int J Radiat Biol Relat Stud Phys Chem Med; 1978 Nov; 34(5):449-60. PubMed ID: 224002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.