These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 26359515)
1. Gold nanoparticle-catalyzed uranine reduction for signal amplification in fluorescent assays for melamine and aflatoxin B1. Wang X; Pauli J; Niessner R; Resch-Genger U; Knopp D Analyst; 2015 Nov; 140(21):7305-12. PubMed ID: 26359515 [TBL] [Abstract][Full Text] [Related]
2. Controlled growth of immunogold for amplified optical detection of aflatoxin B1. Wang X; Niessner R; Knopp D Analyst; 2015 Mar; 140(5):1453-8. PubMed ID: 25600618 [TBL] [Abstract][Full Text] [Related]
3. A "turn-on" fluorescent sensor for ultrasensitive detection of melamine based on a new fluorescence probe and AuNPs. Lu Q; Zhao J; Xue S; Yin P; Zhang Y; Yao S Analyst; 2015 Feb; 140(4):1155-60. PubMed ID: 25512948 [TBL] [Abstract][Full Text] [Related]
4. Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Zhang M; Cao X; Li H; Guan F; Guo J; Shen F; Luo Y; Sun C; Zhang L Food Chem; 2012 Dec; 135(3):1894-900. PubMed ID: 22953938 [TBL] [Abstract][Full Text] [Related]
5. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related]
6. A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection. Wei M; Zhao F; Xie Y Talanta; 2020 Mar; 209():120599. PubMed ID: 31892078 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive aflatoxin B1 sensor based on DNA-guided assembly of fluorescent probe and TdT-assisted DNA polymerization. Wang B; Zheng J; Ding A; Xu L; Chen J; Li CM Food Chem; 2019 Oct; 294():19-26. PubMed ID: 31126452 [TBL] [Abstract][Full Text] [Related]
8. Binding-Induced DNA Dissociation Assay for Small Molecules: Sensing Aflatoxin B1. Xu L; Zhang H; Yan X; Peng H; Wang Z; Zhang Q; Li P; Zhang Z; Le XC ACS Sens; 2018 Dec; 3(12):2590-2596. PubMed ID: 30430837 [TBL] [Abstract][Full Text] [Related]
9. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters. Dai H; Shi Y; Wang Y; Sun Y; Hu J; Ni P; Li Z Biosens Bioelectron; 2014 Mar; 53():76-81. PubMed ID: 24121226 [TBL] [Abstract][Full Text] [Related]
10. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B Lai W; Zeng Q; Tang J; Zhang M; Tang D Mikrochim Acta; 2018 Jan; 185(2):92. PubMed ID: 29594447 [TBL] [Abstract][Full Text] [Related]
11. Developing Gold Nanoparticles-Conjugated Aflatoxin B1 Antifungal Strips. Sojinrin T; Liu K; Wang K; Cui D; J Byrne H; Curtin JF; Tian F Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31842251 [TBL] [Abstract][Full Text] [Related]
12. Label-free immunosensor based on one-step electrodeposition of chitosan-gold nanoparticles biocompatible film on Au microelectrode for determination of aflatoxin B1 in maize. Ma H; Sun J; Zhang Y; Bian C; Xia S; Zhen T Biosens Bioelectron; 2016 Jun; 80():222-229. PubMed ID: 26851579 [TBL] [Abstract][Full Text] [Related]
13. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Chen XY; Ha W; Shi YP Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561 [TBL] [Abstract][Full Text] [Related]
14. Fluorometric determination of aflatoxin B1 using a labeled aptamer and gold nanoparticles modified with a complementary sequence acting as a quencher. Wang C; Li Y; Zhou C; Zhao Q Mikrochim Acta; 2019 Oct; 186(11):728. PubMed ID: 31656974 [TBL] [Abstract][Full Text] [Related]
15. Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles. Wang X; Niessner R; Knopp D Sensors (Basel); 2014 Nov; 14(11):21535-48. PubMed ID: 25405511 [TBL] [Abstract][Full Text] [Related]
16. Enzyme-controlled dissolution of MnO Lai W; Wei Q; Xu M; Zhuang J; Tang D Biosens Bioelectron; 2017 Mar; 89(Pt 1):645-651. PubMed ID: 26725933 [TBL] [Abstract][Full Text] [Related]
17. A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Xu X; Liu X; Li Y; Ying Y Biosens Bioelectron; 2013 Sep; 47():361-7. PubMed ID: 23603134 [TBL] [Abstract][Full Text] [Related]
18. Visual detection of melamine in milk products by label-free gold nanoparticles. Guo L; Zhong J; Wu J; Fu F; Chen G; Zheng X; Lin S Talanta; 2010 Oct; 82(5):1654-8. PubMed ID: 20875559 [TBL] [Abstract][Full Text] [Related]
19. Development of a label-free, sensitive gold nanoparticles-poly(adenine) aptasensing platform for colorimetric determination of aflatoxin B1 in corn. Shayesteh OH; Derakhshandeh K; Ranjbar A; Mahjub R; Farmany A Anal Methods; 2024 May; 16(19):3030-3038. PubMed ID: 38682263 [TBL] [Abstract][Full Text] [Related]
20. Label-free direct detection of melamine using functionalized gold nanoparticles-based dual-fluorescence colorimetric nanoswitch sensing platform. Xiong J; Sun B; Wang S; Zhang S; Qin L; Jiang H Talanta; 2024 Sep; 277():126335. PubMed ID: 38823323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]