BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26359590)

  • 21. Suitability of Artificial Membranes in Lipolysis-Permeation Assays of Oral Lipid-Based Formulations.
    Hedge OJ; Bergström CAS
    Pharm Res; 2020 May; 37(6):99. PubMed ID: 32435855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 50years of oral lipid-based formulations: Provenance, progress and future perspectives.
    Feeney OM; Crum MF; McEvoy CL; Trevaskis NL; Williams HD; Pouton CW; Charman WN; Bergström CAS; Porter CJH
    Adv Drug Deliv Rev; 2016 Jun; 101():167-194. PubMed ID: 27089810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-Frequency Raman Scattering Spectroscopy as an Accessible Approach to Understand Drug Solubilization in Milk-Based Formulations during Digestion.
    Salim M; Fraser-Miller SJ; Be Rziņš KR; Sutton JJ; Ramirez G; Clulow AJ; Hawley A; Beilles S; Gordon KC; Boyd BJ
    Mol Pharm; 2020 Mar; 17(3):885-899. PubMed ID: 32011151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of Artefenomel (OZ439) with Milk during Digestion: Insights into Digestion-Driven Solubilization and Polymorphic Transformations.
    Salim M; Khan J; Ramirez G; Clulow AJ; Hawley A; Ramachandruni H; Boyd BJ
    Mol Pharm; 2018 Aug; 15(8):3535-3544. PubMed ID: 29932660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations.
    Williams HD; Sassene P; Kleberg K; Calderone M; Igonin A; Jule E; Vertommen J; Blundell R; Benameur H; Müllertz A; Pouton CW; Porter CJ;
    Pharm Res; 2013 Dec; 30(12):3059-76. PubMed ID: 23661145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs.
    Carrière F
    Biochimie; 2016 Jun; 125():297-305. PubMed ID: 26607242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 4: proposing a new lipid formulation performance classification system.
    Williams HD; Sassene P; Kleberg K; Calderone M; Igonin A; Jule E; Vertommen J; Blundell R; Benameur H; Müllertz A; Porter CJ; Pouton CW;
    J Pharm Sci; 2014 Aug; 103(8):2441-55. PubMed ID: 24985238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biopharmaceutical modeling of drug supersaturation during lipid-based formulation digestion considering an absorption sink.
    Stillhart C; Imanidis G; Griffin BT; Kuentz M
    Pharm Res; 2014 Dec; 31(12):3426-44. PubMed ID: 24962509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into drug precipitation kinetics during in vitro digestion of a lipid-based drug delivery system using in-line raman spectroscopy and mathematical modeling.
    Stillhart C; Imanidis G; Kuentz M
    Pharm Res; 2013 Dec; 30(12):3114-30. PubMed ID: 23456098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving Correlations Between Drug Solubilization and In Vitro Lipolysis by Monitoring the Phase Partitioning of Lipolytic Species for Lipid-Based Formulations.
    Dening TJ; Joyce P; Prestidge CA
    J Pharm Sci; 2019 Jan; 108(1):295-304. PubMed ID: 30257194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid determination of drug solubilization versus supersaturation in natural and digested lipids.
    Gautschi N; Bergström CA; Kuentz M
    Int J Pharm; 2016 Nov; 513(1-2):164-174. PubMed ID: 27609663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying.
    Hu J; Ng WK; Dong Y; Shen S; Tan RB
    Int J Pharm; 2011 Feb; 404(1-2):198-204. PubMed ID: 21056643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.
    Crum MF; Trevaskis NL; Williams HD; Pouton CW; Porter CJ
    Pharm Res; 2016 Apr; 33(4):970-82. PubMed ID: 26703975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immobilised lipase for in vitro lipolysis experiments.
    Phan S; Salentinig S; Hawley A; Boyd BJ
    J Pharm Sci; 2015 Apr; 104(4):1311-8. PubMed ID: 25630824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Montmorillonite-lipid hybrid carriers for ionizable and neutral poorly water-soluble drugs: Formulation, characterization and in vitro lipolysis studies.
    Dening TJ; Rao S; Thomas N; Prestidge CA
    Int J Pharm; 2017 Jun; 526(1-2):95-105. PubMed ID: 28456653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidating the Molecular Interactions Occurring during Drug Precipitation of Weak Bases from Lipid-Based Formulations: A Case Study with Cinnarizine and a Long Chain Self-Nanoemulsifying Drug Delivery System.
    Sassene PJ; Mosgaard MD; Löbmann K; Mu H; Larsen FH; Rades T; Müllertz A
    Mol Pharm; 2015 Nov; 12(11):4067-76. PubMed ID: 26393273
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Ferroquine on the Solubilization of Artefenomel (OZ439) during in Vitro Lipolysis in Milk and Implications for Oral Combination Therapy for Malaria.
    Salim M; Khan J; Ramirez G; Murshed M; Clulow AJ; Hawley A; Ramachandruni H; Beilles S; Boyd BJ
    Mol Pharm; 2019 Apr; 16(4):1658-1668. PubMed ID: 30830789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the impact of polymers on the pH-induced precipitation behavior of poorly water soluble compounds using synchrotron wide angle X-ray scattering.
    Hsieh YL; Box K; Taylor LS
    J Pharm Sci; 2014 Sep; 103(9):2724-2735. PubMed ID: 24504566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS).
    Thomas N; Holm R; Müllertz A; Rades T
    J Control Release; 2012 May; 160(1):25-32. PubMed ID: 22405903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoacyl phosphatidylcholine inhibits the formation of lipid multilamellar structures during in vitro lipolysis of self-emulsifying drug delivery systems.
    Tran T; Siqueira SDVS; Amenitsch H; Rades T; Müllertz A
    Eur J Pharm Sci; 2017 Oct; 108():62-70. PubMed ID: 27890596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.