These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26359780)

  • 21. Accelerating locomotor savings in learning: compressing four training days to one.
    Day KA; Leech KA; Roemmich RT; Bastian AJ
    J Neurophysiol; 2018 Jun; 119(6):2100-2113. PubMed ID: 29537915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concurrent locomotor adaptation and retention to visual and split-belt perturbations.
    Kim SJ; Howsden S; Bartels N; Lee H
    PLoS One; 2022; 17(12):e0279585. PubMed ID: 36584009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of body weight support on ankle mechanics during treadmill walking.
    Lewek MD
    J Biomech; 2011 Jan; 44(1):128-33. PubMed ID: 20855074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hip, Knee, and Ankle Osteoarthritis Negatively Affects Mechanical Energy Exchange.
    Queen RM; Sparling TL; Schmitt D
    Clin Orthop Relat Res; 2016 Sep; 474(9):2055-63. PubMed ID: 27287859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of the gait adaptation process due to split-belt treadmill walking under a wide range of right-left speed ratios in humans.
    Yokoyama H; Sato K; Ogawa T; Yamamoto SI; Nakazawa K; Kawashima N
    PLoS One; 2018; 13(4):e0194875. PubMed ID: 29694404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway.
    Rosenblatt NJ; Latash ML; Hurt CP; Grabiner MD
    Neurosci Lett; 2015 Jul; 600():110-4. PubMed ID: 26003449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry.
    Sombric CJ; Calvert JS; Torres-Oviedo G
    Front Physiol; 2019; 10():60. PubMed ID: 30800072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gradual training reduces practice difficulty while preserving motor learning of a novel locomotor task.
    Sawers A; Hahn ME
    Hum Mov Sci; 2013 Aug; 32(4):605-17. PubMed ID: 24054898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in mechanical work during neural adaptation to asymmetric locomotion.
    Selgrade BP; Thajchayapong M; Lee GE; Toney ME; Chang YH
    J Exp Biol; 2017 Aug; 220(Pt 16):2993-3000. PubMed ID: 28596214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dual-learning paradigm can simultaneously train multiple characteristics of walking.
    Statton MA; Toliver A; Bastian AJ
    J Neurophysiol; 2016 May; 115(5):2692-700. PubMed ID: 26961100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gait asymmetry during early split-belt walking is related to perception of belt speed difference.
    Hoogkamer W; Bruijn SM; Potocanac Z; Van Calenbergh F; Swinnen SP; Duysens J
    J Neurophysiol; 2015 Sep; 114(3):1705-12. PubMed ID: 26203114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke.
    Reisman DS; Wityk R; Silver K; Bastian AJ
    Brain; 2007 Jul; 130(Pt 7):1861-72. PubMed ID: 17405765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time-series changes in intramuscular coherence associated with split-belt treadmill adaptation in humans.
    Oshima A; Wakahara T; Nakamura Y; Tsujiuchi N; Kamibayashi K
    Exp Brain Res; 2021 Jul; 239(7):2127-2139. PubMed ID: 33961075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.
    Silver-Thorn B; Current T; Kuhse B
    Prosthet Orthot Int; 2012 Dec; 36(4):435-42. PubMed ID: 22581661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
    Stoquart G; Detrembleur C; Lejeune T
    Neurophysiol Clin; 2008 Apr; 38(2):105-16. PubMed ID: 18423331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Independent voluntary correction and savings in locomotor learning.
    Leech KA; Roemmich RT
    J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29903840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of various treadmill interventions on the development of joint kinematics in infants with Down syndrome.
    Wu J; Looper J; Ulrich DA; Angulo-Barroso RM
    Phys Ther; 2010 Sep; 90(9):1265-76. PubMed ID: 20651010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptation to unilateral change in lower limb mechanical properties during human walking.
    Noble JW; Prentice SD
    Exp Brain Res; 2006 Mar; 169(4):482-95. PubMed ID: 16328304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.