These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 26359986)

  • 1. Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress.
    Wallace EW; Kear-Scott JL; Pilipenko EV; Schwartz MH; Laskowski PR; Rojek AE; Katanski CD; Riback JA; Dion MF; Franks AM; Airoldi EM; Pan T; Budnik BA; Drummond DA
    Cell; 2015 Sep; 162(6):1286-98. PubMed ID: 26359986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae.
    Grousl T; Ivanov P; Frýdlová I; Vasicová P; Janda F; Vojtová J; Malínská K; Malcová I; Nováková L; Janosková D; Valásek L; Hasek J
    J Cell Sci; 2009 Jun; 122(Pt 12):2078-88. PubMed ID: 19470581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast.
    Yamamoto Y; Izawa S
    Genes Cells; 2013 Nov; 18(11):974-84. PubMed ID: 24033457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hsf1 activation by proteotoxic stress requires concurrent protein synthesis.
    Tye BW; Churchman LS
    Mol Biol Cell; 2021 Sep; 32(19):1800-1806. PubMed ID: 34191586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae.
    Trotter EW; Kao CM; Berenfeld L; Botstein D; Petsko GA; Gray JV
    J Biol Chem; 2002 Nov; 277(47):44817-25. PubMed ID: 12239211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Transient Protein Aggregate-like Centers Is a General Strategy Postponing Degradation of Misfolded Intermediates.
    Boronat S; Cabrera M; Vega M; Alcalá J; Salas-Pino S; Daga RR; Ayté J; Hidalgo E
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress.
    Cherkasov V; Grousl T; Theer P; Vainshtein Y; Glässer C; Mongis C; Kramer G; Stoecklin G; Knop M; Mogk A; Bukau B
    FEBS Lett; 2015 Nov; 589(23):3654-64. PubMed ID: 26484595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast.
    Jacobson T; Navarrete C; Sharma SK; Sideri TC; Ibstedt S; Priya S; Grant CM; Christen P; Goloubinoff P; Tamás MJ
    J Cell Sci; 2012 Nov; 125(Pt 21):5073-83. PubMed ID: 22946053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of translational control and protein homeostasis during severe heat stress.
    Cherkasov V; Hofmann S; Druffel-Augustin S; Mogk A; Tyedmers J; Stoecklin G; Bukau B
    Curr Biol; 2013 Dec; 23(24):2452-62. PubMed ID: 24291094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomics identifies the universally conserved ATPase Ola1p as a positive regulator of heat shock response in Saccharomyces cerevisiae.
    Dannenmaier S; Desroches Altamirano C; Schüler L; Zhang Y; Hummel J; Milanov M; Oeljeklaus S; Koch HG; Rospert S; Alberti S; Warscheid B
    J Biol Chem; 2021 Nov; 297(5):101050. PubMed ID: 34571008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance.
    Rikhvanov EG; Fedoseeva IV; Varakina NN; Rusaleva TM; Fedyaeva AV
    Biochemistry (Mosc); 2014 Jan; 79(1):16-24. PubMed ID: 24512659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae.
    Barraza CE; Solari CA; Marcovich I; Kershaw C; Galello F; Rossi S; Ashe MP; Portela P
    PLoS One; 2017; 12(10):e0185416. PubMed ID: 29045428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae.
    Mir SS; Fiedler D; Cashikar AG
    Mol Cell Biol; 2009 Jan; 29(1):187-200. PubMed ID: 18936161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding.
    Ungelenk S; Moayed F; Ho CT; Grousl T; Scharf A; Mashaghi A; Tans S; Mayer MP; Mogk A; Bukau B
    Nat Commun; 2016 Nov; 7():13673. PubMed ID: 27901028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gpd1 Regulates the Activity of Tcp-1 and Heat Shock Response in Yeast Cells: Effect on Aggregation of Mutant Huntingtin.
    Bhadra AK; Roy I
    Mol Neurobiol; 2016 Aug; 53(6):3900-3913. PubMed ID: 26164272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae.
    Buchan JR; Yoon JH; Parker R
    J Cell Sci; 2011 Jan; 124(Pt 2):228-39. PubMed ID: 21172806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the interaction proteome of mitochondrial chaperone Hsp78 highlights its role in protein aggregation during heat stress.
    Jaworek W; Sylvester M; Cenini G; Voos W
    J Biol Chem; 2022 Oct; 298(10):102494. PubMed ID: 36115461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy.
    Miller SB; Mogk A; Bukau B
    J Mol Biol; 2015 Apr; 427(7):1564-74. PubMed ID: 25681695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition.
    Miller SB; Ho CT; Winkler J; Khokhrina M; Neuner A; Mohamed MY; Guilbride DL; Richter K; Lisby M; Schiebel E; Mogk A; Bukau B
    EMBO J; 2015 Mar; 34(6):778-97. PubMed ID: 25672362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae.
    Specht S; Miller SB; Mogk A; Bukau B
    J Cell Biol; 2011 Nov; 195(4):617-29. PubMed ID: 22065637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.