These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26360595)

  • 1. Single cell active force generation under dynamic loading - Part II: Active modelling insights.
    Reynolds NH; McGarry JP
    Acta Biomater; 2015 Nov; 27():251-263. PubMed ID: 26360595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell active force generation under dynamic loading - Part I: AFM experiments.
    Weafer PP; Reynolds NH; Jarvis SP; McGarry JP
    Acta Biomater; 2015 Nov; 27():236-250. PubMed ID: 26360596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation.
    Dowling EP; Ronan W; Ofek G; Deshpande VS; McMeeking RM; Athanasiou KA; McGarry JP
    J R Soc Interface; 2012 Dec; 9(77):3469-79. PubMed ID: 22809850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
    Dowling EP; Ronan W; McGarry JP
    Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient active force generation and stress fibre remodelling in cells under cyclic loading.
    McEvoy E; Deshpande VS; McGarry P
    Biomech Model Mechanobiol; 2019 Aug; 18(4):921-937. PubMed ID: 30783833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological Transformation and Force Generation of Active Cytoskeletal Networks.
    Bidone TC; Jung W; Maruri D; Borau C; Kamm RD; Kim T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005277. PubMed ID: 28114384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression.
    Weafer PP; Ronan W; Jarvis SP; McGarry JP
    Bull Math Biol; 2013 Aug; 75(8):1284-303. PubMed ID: 23354930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamic mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions under cyclic compressive loading.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2008 Dec; 130(6):061009. PubMed ID: 19045538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells.
    Ronan W; Deshpande VS; McMeeking RM; McGarry JP
    J Mech Behav Biomed Mater; 2012 Oct; 14():143-57. PubMed ID: 23026692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells.
    Reynolds NH; Ronan W; Dowling EP; Owens P; McMeeking RM; McGarry JP
    Biomaterials; 2014 Apr; 35(13):4015-25. PubMed ID: 24529900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of vimentin disruption on the mechanoresponses of articular chondrocyte.
    Chen C; Yin L; Song X; Yang H; Ren X; Gong X; Wang F; Yang L
    Biochem Biophys Res Commun; 2016 Jan; 469(1):132-137. PubMed ID: 26616052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the mechanical behaviour of the foot skin.
    Fontanella CG; Carniel EL; Forestiero A; Natali AN
    Skin Res Technol; 2014 Nov; 20(4):445-52. PubMed ID: 24527962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrocyte deformation during the unloading phase of cyclic compression loading.
    Otoo BS; Kuan Moo E; Komeili A; Hart DA; Herzog W
    J Biomech; 2024 Jun; 171():112179. PubMed ID: 38852482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach.
    Sakamoto Y; Buchanan RM; Sanchez-Adams J; Guilak F; Sacks MS
    J Biomech Eng; 2017 Feb; 139(2):0210071-02100713. PubMed ID: 28024085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM; Robling AG; Turner CH
    Ann Biomed Eng; 2010 Mar; 38(3):594-604. PubMed ID: 20013156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of spreading and contractility on cell detachment.
    Dowling EP; McGarry JP
    Ann Biomed Eng; 2014 May; 42(5):1037-48. PubMed ID: 24356853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.