BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 26360816)

  • 1. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers.
    Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P
    Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function.
    Li X; Ye J; Ma H; Lu P
    Plant J; 2018 Jan; 93(1):142-154. PubMed ID: 29124795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development.
    Jung KH; Han MJ; Lee YS; Kim YW; Hwang I; Kim MJ; Kim YK; Nahm BH; An G
    Plant Cell; 2005 Oct; 17(10):2705-22. PubMed ID: 16141453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice.
    Qin P; Tu B; Wang Y; Deng L; Quilichini TD; Li T; Wang H; Ma B; Li S
    Plant Cell Physiol; 2013 Jan; 54(1):138-54. PubMed ID: 23220695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abundant protein phosphorylation potentially regulates Arabidopsis anther development.
    Ye J; Zhang Z; You C; Zhang X; Lu J; Ma H
    J Exp Bot; 2016 Sep; 67(17):4993-5008. PubMed ID: 27531888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phosphoproteomic landscape of rice (Oryza sativa) tissues.
    Wang Y; Tong X; Qiu J; Li Z; Zhao J; Hou Y; Tang L; Zhang J
    Physiol Plant; 2017 Aug; 160(4):458-475. PubMed ID: 28382632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin.
    Hong L; Tang D; Zhu K; Wang K; Li M; Cheng Z
    Plant Cell; 2012 Feb; 24(2):577-88. PubMed ID: 22319054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of phosphoproteome in rice pistil.
    Wang K; Zhao Y; Li M; Gao F; Yang MK; Wang X; Li S; Yang P
    Proteomics; 2014 Oct; 14(20):2319-34. PubMed ID: 25074045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis.
    Yi J; Kim SR; Lee DY; Moon S; Lee YS; Jung KH; Hwang I; An G
    Plant J; 2012 Apr; 70(2):256-70. PubMed ID: 22111585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Global proteomic and phosphoproteomic analysis of the premature maize anther].
    Zhang Z; Ye J; Long H; Hong Y; Lu P
    Sheng Wu Gong Cheng Xue Bao; 2016 Jul; 32(7):937-955. PubMed ID: 29019215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress.
    Zhang Z; Hu M; Feng X; Gong A; Cheng L; Yuan H
    Proteomics; 2017 Oct; 17(20):. PubMed ID: 28665021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum.
    Ono S; Liu H; Tsuda K; Fukai E; Tanaka K; Sasaki T; Nonomura KI
    PLoS Genet; 2018 Feb; 14(2):e1007238. PubMed ID: 29432414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice.
    Zhang D; Liang W; Yin C; Zong J; Gu F; Zhang D
    Plant Physiol; 2010 Sep; 154(1):149-62. PubMed ID: 20610705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory Role of a Receptor-Like Kinase in Specifying Anther Cell Identity.
    Yang L; Qian X; Chen M; Fei Q; Meyers BC; Liang W; Zhang D
    Plant Physiol; 2016 Jul; 171(3):2085-100. PubMed ID: 27208278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.).
    Qiu J; Hou Y; Wang Y; Li Z; Zhao J; Tong X; Lin H; Wei X; Ao H; Zhang J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preliminary proteomics analysis of the total proteins of HL Type cytoplasmic male sterility rice anther].
    Wen L; Liu G; Zhang ZJ; Tao J; Wan CX; Zhu YG
    Yi Chuan; 2006 Mar; 28(3):311-6. PubMed ID: 16551598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).
    Qiu J; Hou Y; Tong X; Wang Y; Lin H; Liu Q; Zhang W; Li Z; Nallamilli BR; Zhang J
    Plant Mol Biol; 2016 Feb; 90(3):249-65. PubMed ID: 26613898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants.
    Nakagami H; Sugiyama N; Mochida K; Daudi A; Yoshida Y; Toyoda T; Tomita M; Ishihama Y; Shirasu K
    Plant Physiol; 2010 Jul; 153(3):1161-74. PubMed ID: 20466843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM
    J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OsFTIP7 determines auxin-mediated anther dehiscence in rice.
    Song S; Chen Y; Liu L; See YHB; Mao C; Gan Y; Yu H
    Nat Plants; 2018 Jul; 4(7):495-504. PubMed ID: 29915329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.