BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26360912)

  • 41. Low-temperature trapping of N2 reduction reaction intermediates in nitrogenase MoFe protein-CdS quantum dot complexes.
    Pellows LM; Vansuch GE; Chica B; Yang ZY; Ruzicka JL; Willis MA; Clinger A; Brown KA; Seefeldt LC; Peters JW; Dukovic G; Mulder DW; King PW
    J Chem Phys; 2023 Dec; 159(23):. PubMed ID: 38117020
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor.
    Spatzal T; Perez KA; Howard JB; Rees DC
    Elife; 2015 Dec; 4():e11620. PubMed ID: 26673079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP.
    Lanzilotta WN; Parker VD; Seefeldt LC
    Biochemistry; 1998 Jan; 37(1):399-407. PubMed ID: 9425061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrogenase structure and function: a biochemical-genetic perspective.
    Peters JW; Fisher K; Dean DR
    Annu Rev Microbiol; 1995; 49():335-66. PubMed ID: 8561464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electroenzymatic Nitrogen Fixation Using a MoFe Protein System Immobilized in an Organic Redox Polymer.
    Lee YS; Ruff A; Cai R; Lim K; Schuhmann W; Minteer SD
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16511-16516. PubMed ID: 32500662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled protonation of iron-molybdenum cofactor by nitrogenase: a structural and theoretical analysis.
    Durrant MC
    Biochem J; 2001 May; 355(Pt 3):569-76. PubMed ID: 11311117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanistic interpretation of the dilution effect for Azotobacter vinelandii and Clostridium pasteurianum nitrogenase catalysis.
    Johnson JL; Nyborg AC; Wilson PE; Tolley AM; Nordmeyer FR; Watt GD
    Biochim Biophys Acta; 2000 Nov; 1543(1):36-46. PubMed ID: 11087939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of affinity purification methods for analysis of the nitrogenase system from Azotobacter vinelandii.
    Jiménez-Vicente E; Martin Del Campo JS; Yang ZY; Cash VL; Dean DR; Seefeldt LC
    Methods Enzymol; 2018; 613():231-255. PubMed ID: 30509468
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the beta-subunit.
    May HD; Dean DR; Newton WE
    Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):457-64. PubMed ID: 1650185
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters.
    Jimenez-Vicente E; Yang ZY; Martin Del Campo JS; Cash VL; Seefeldt LC; Dean DR
    J Biol Chem; 2019 Apr; 294(16):6204-6213. PubMed ID: 30846561
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Sep; 39(35):10855-65. PubMed ID: 10978172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energy transduction by nitrogenase: binding of MgADP to the MoFe protein is dependent on the oxidation state of the iron-sulphur 'P' clusters.
    Miller RW; Smith BE; Eady RR
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):709-11. PubMed ID: 8489498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selenocyanate derived Se-incorporation into the nitrogenase Fe protein cluster.
    Buscagan TM; Kaiser JT; Rees DC
    Elife; 2022 Jul; 11():. PubMed ID: 35904245
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain.
    Scott DJ; Dean DR; Newton WE
    J Biol Chem; 1992 Oct; 267(28):20002-10. PubMed ID: 1328190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electron Transfer in Nitrogenase.
    Rutledge HL; Tezcan FA
    Chem Rev; 2020 Jun; 120(12):5158-5193. PubMed ID: 31999100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystallization of Nitrogenase Proteins.
    Wenke BB; Arias RJ; Spatzal T
    Methods Mol Biol; 2019; 1876():155-165. PubMed ID: 30317480
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox-Dependent Metastability of the Nitrogenase P-Cluster.
    Rutledge HL; Rittle J; Williamson LM; Xu WA; Gagnon DM; Tezcan FA
    J Am Chem Soc; 2019 Jun; 141(25):10091-10098. PubMed ID: 31146522
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of iron-molybdenum cofactor-deficient nitrogenase MoFe proteins by X-ray absorption spectroscopy: implications for P-cluster biosynthesis.
    Corbett MC; Hu Y; Naderi F; Ribbe MW; Hedman B; Hodgson KO
    J Biol Chem; 2004 Jul; 279(27):28276-82. PubMed ID: 15102840
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological function.
    Fisher K; Lowe DJ; Tavares P; Pereira AS; Huynh BH; Edmondson D; Newton WE
    J Inorg Biochem; 2007 Nov; 101(11-12):1649-56. PubMed ID: 17845818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.