BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26361061)

  • 1. Post-translational Introduction of D-Alanine into Ribosomally Synthesized Peptides by the Dehydroalanine Reductase NpnJ.
    Yang X; van der Donk WA
    J Am Chem Soc; 2015 Oct; 137(39):12426-9. PubMed ID: 26361061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P450-Mediated Non-natural Cyclopropanation of Dehydroalanine-Containing Thiopeptides.
    Gober JG; Ghodge SV; Bogart JW; Wever WJ; Watkins RR; Brustad EM; Bowers AA
    ACS Chem Biol; 2017 Jul; 12(7):1726-1731. PubMed ID: 28535034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Modification of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) through Diels-Alder Cycloadditions on Dehydroalanine Residues.
    de Vries RH; Viel JH; Oudshoorn R; Kuipers OP; Roelfes G
    Chemistry; 2019 Oct; 25(55):12698-12702. PubMed ID: 31361053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dehydroalanine-based inhibition of a peptide epimerase from spider venom.
    Murkin AS; Tanner ME
    J Org Chem; 2002 Nov; 67(24):8389-94. PubMed ID: 12444615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal synthesis of dehydroalanine-containing peptides.
    Seebeck FP; Szostak JW
    J Am Chem Soc; 2006 Jun; 128(22):7150-1. PubMed ID: 16734454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide.
    Skaugen M; Nissen-Meyer J; Jung G; Stevanovic S; Sletten K; Inger C; Abildgaard M; Nes IF
    J Biol Chem; 1994 Nov; 269(44):27183-5. PubMed ID: 7961627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salinipeptins: Integrated Genomic and Chemical Approaches Reveal Unusual d-Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp.
    Shang Z; Winter JM; Kauffman CA; Yang I; Fenical W
    ACS Chem Biol; 2019 Mar; 14(3):415-425. PubMed ID: 30753052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible hydrogen transfer reactions of cysteine thiyl radicals in peptides: the conversion of cysteine into dehydroalanine and alanine, and of alanine into dehydroalanine.
    Mozziconacci O; Kerwin BA; Schöneich C
    J Phys Chem B; 2011 Oct; 115(42):12287-305. PubMed ID: 21895001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery and Characterization of Bicereucin, an Unusual d-Amino Acid-Containing Mixed Two-Component Lantibiotic.
    Huo L; van der Donk WA
    J Am Chem Soc; 2016 Apr; 138(16):5254-7. PubMed ID: 27074593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu
    de Vries RH; Viel JH; Kuipers OP; Roelfes G
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3946-3950. PubMed ID: 33185967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis.
    Benjdia A; Guillot A; Ruffié P; Leprince J; Berteau O
    Nat Chem; 2017 Jul; 9(7):698-707. PubMed ID: 28644475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting reactions of nonlinear precursor peptide processing of the class III lanthipeptide curvopeptin.
    Jungmann NA; Krawczyk B; Tietzmann M; Ensle P; Süssmuth RD
    J Am Chem Soc; 2014 Oct; 136(43):15222-8. PubMed ID: 25291240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical generation and modification of peptides containing multiple dehydroalanines.
    Morrison PM; Foley PJ; Warriner SL; Webb ME
    Chem Commun (Camb); 2015 Sep; 51(70):13470-3. PubMed ID: 26219458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and mechanism of lanthipeptide biosynthetic enzymes.
    van der Donk WA; Nair SK
    Curr Opin Struct Biol; 2014 Dec; 29():58-66. PubMed ID: 25460269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu(II)-Catalysed β-silylation of dehydroalanine residues in peptides and proteins.
    de Vries RH; Roelfes G
    Chem Commun (Camb); 2020 Sep; 56(75):11058-11061. PubMed ID: 32812557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posttranslational amino acid epimerization: enzyme-catalyzed isomerization of amino acid residues in peptide chains.
    Heck SD; Faraci WS; Kelbaugh PR; Saccomano NA; Thadeio PF; Volkmann RA
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4036-9. PubMed ID: 8633012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of protein-protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides.
    Sikandar A; Koehnke J
    Nat Prod Rep; 2019 Nov; 36(11):1576-1588. PubMed ID: 30920567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile chemoselective synthesis of dehydroalanine-containing peptides.
    Okeley NM; Zhu Y; van Der Donk WA
    Org Lett; 2000 Nov; 2(23):3603-6. PubMed ID: 11073655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of Cittilins, Unusual Ribosomally Synthesized and Post-translationally Modified Peptides from
    Hug JJ; Dastbaz J; Adam S; Revermann O; Koehnke J; Krug D; Müller R
    ACS Chem Biol; 2020 Aug; 15(8):2221-2231. PubMed ID: 32639716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.