BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 26361255)

  • 1. A Structure-Activity Analysis for Probing the Mechanism of Processive Double-Stranded DNA Digestion by λ Exonuclease Trimers.
    Pan X; Smith CE; Zhang J; McCabe KA; Fu J; Bell CE
    Biochemistry; 2015 Oct; 54(39):6139-48. PubMed ID: 26361255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant poisoning demonstrates a nonsequential mechanism for digestion of double-stranded DNA by λ exonuclease trimers.
    Pan X; Yan J; Patel A; Wysocki VH; Bell CE
    Biochemistry; 2015 Jan; 54(3):942-51. PubMed ID: 25531139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of lambda exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity.
    Zhang J; McCabe KA; Bell CE
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11872-7. PubMed ID: 21730170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of λ exonuclease in complex with DNA and Ca(2+).
    Zhang J; Pan X; Bell CE
    Biochemistry; 2014 Dec; 53(47):7415-25. PubMed ID: 25370446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks.
    Zhang J; Xing X; Herr AB; Bell CE
    Structure; 2009 May; 17(5):690-702. PubMed ID: 19446525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain Structure of the Redβ Single-Strand Annealing Protein: the C-terminal Domain is Required for Fine-Tuning DNA-binding Properties, Interaction with the Exonuclease Partner, and Recombination in vivo.
    Smith CE; Bell CE
    J Mol Biol; 2016 Feb; 428(3):561-578. PubMed ID: 26780547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toroidal structure of lambda-exonuclease.
    Kovall R; Matthews BW
    Science; 1997 Sep; 277(5333):1824-7. PubMed ID: 9295273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis.
    Yang W; Chen WY; Wang H; Ho JW; Huang JD; Woo PC; Lau SK; Yuen KY; Zhang Q; Zhou W; Bartlam M; Watt RM; Rao Z
    Nucleic Acids Res; 2011 Dec; 39(22):9803-19. PubMed ID: 21893587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease.
    Ceska TA; Sayers JR; Stier G; Suck D
    Nature; 1996 Jul; 382(6586):90-3. PubMed ID: 8657312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric ring assembly and chemo-mechanical melting by the interaction between 5'-phosphate and λ exonuclease.
    Yoo J; Lee G
    Nucleic Acids Res; 2015 Dec; 43(22):10861-9. PubMed ID: 26527731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of Escherichia coli exonuclease I in complex with single-stranded DNA provide insights into the mechanism of processive digestion.
    Korada SK; Johns TD; Smith CE; Jones ND; McCabe KA; Bell CE
    Nucleic Acids Res; 2013 Jun; 41(11):5887-97. PubMed ID: 23609540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enzymatic basis of processivity in lambda exonuclease.
    Subramanian K; Rutvisuttinunt W; Scott W; Myers RS
    Nucleic Acids Res; 2003 Mar; 31(6):1585-96. PubMed ID: 12626699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination.
    Murphy KC
    J Mol Biol; 2000 Feb; 296(2):385-401. PubMed ID: 10669596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the interaction of lambda exonuclease with the ends of DNA.
    Mitsis PG; Kwagh JG
    Nucleic Acids Res; 1999 Aug; 27(15):3057-63. PubMed ID: 10454600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for substrate recognition and processive cleavage mechanisms of the trimeric exonuclease PhoExo I.
    Miyazono K; Ishino S; Tsutsumi K; Ito T; Ishino Y; Tanokura M
    Nucleic Acids Res; 2015 Aug; 43(14):7122-36. PubMed ID: 26138487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noncanonical substrate preference of lambda exonuclease for 5'-nonphosphate-ended dsDNA and a mismatch-induced acceleration effect on the enzymatic reaction.
    Wu T; Yang Y; Chen W; Wang J; Yang Z; Wang S; Xiao X; Li M; Zhao M
    Nucleic Acids Res; 2018 Apr; 46(6):3119-3129. PubMed ID: 29490081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orchestration of Haemophilus influenzae RecJ exonuclease by interaction with single-stranded DNA-binding protein.
    Sharma R; Rao DN
    J Mol Biol; 2009 Feb; 385(5):1375-96. PubMed ID: 19094995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA binding induces active site conformational change in the human TREX2 3'-exonuclease.
    de Silva U; Perrino FW; Hollis T
    Nucleic Acids Res; 2009 Apr; 37(7):2411-7. PubMed ID: 19321497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the multifunctional DNA-repair enzyme exonuclease III.
    Mol CD; Kuo CF; Thayer MM; Cunningham RP; Tainer JA
    Nature; 1995 Mar; 374(6520):381-6. PubMed ID: 7885481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of Escherichia coli exonuclease I in complex with thymidine 5'-monophosphate.
    Busam RD
    Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):206-10. PubMed ID: 18219121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.