These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26361287)

  • 41. Shape optimization in unsteady blood flow: a numerical study of non-Newtonian effects.
    Abraham F; Behr M; Heinkenschloss M
    Comput Methods Biomech Biomed Engin; 2005 Jun; 8(3):201-12. PubMed ID: 16214714
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A significant role of permeability on blood flow for hybrid nanofluid through bifurcated stenosed artery: Drug delivery application.
    Shahzadi I; Bilal S
    Comput Methods Programs Biomed; 2020 Apr; 187():105248. PubMed ID: 31821978
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Turbulence detection in a stenosed artery bifurcation by numerical simulation of pulsatile blood flow using the low-Reynolds number turbulence model.
    Ghalichi F; Deng X
    Biorheology; 2003; 40(6):637-54. PubMed ID: 14610313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non spiral and spiral (helical) flow patterns in stenoses. In vitro observations using spin and gradient echo magnetic resonance imaging (MRI) and computational fluid dynamic modeling.
    Stonebridge PA; Buckley C; Thompson A; Dick J; Hunter G; Chudek JA; Houston JG; Belch JJ
    Int Angiol; 2004 Sep; 23(3):276-83. PubMed ID: 15765044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Computational Fluid Dynamics Analyses on Hemodynamic Characteristics in Stenosed Arterial Models.
    Zhou Y; Lee C; Wang J
    J Healthc Eng; 2018; 2018():4312415. PubMed ID: 29732048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.
    Tripathi J; Vasu B; Bég OA; Mounika BR; Gorla RSR
    Microvasc Res; 2022 Jul; 142():104375. PubMed ID: 35577615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computer simulation of non-newtonian effects on blood flow in large arteries.
    Leuprecht A; Perktold K
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):149-63. PubMed ID: 11264865
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pulsatile flow through a constricted tube: effect of stenosis morphology on hemodynamic parameters.
    Kelidis P; Konstantinidis E
    Comput Methods Biomech Biomed Engin; 2018 May; 21(7):479-487. PubMed ID: 30010433
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling and simulation of pulsatile blood flow with a physiologic wave pattern.
    Marques PF; Oliveira ME; Franca AS; Pinotti M
    Artif Organs; 2003 May; 27(5):478-85. PubMed ID: 12752213
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic response of wall shear stress on the stenosed artery.
    Sen S; Chakravarty S
    Comput Methods Biomech Biomed Engin; 2009 Oct; 12(5):523-9. PubMed ID: 19294542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large deforming buoyant embolus passing through a stenotic common carotid artery: a computational simulation.
    Vahidi B; Fatouraee N
    J Biomech; 2012 Apr; 45(7):1312-22. PubMed ID: 22365500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hemodynamics of an artery with mild stenosis.
    Cavalcanti S
    J Biomech; 1995 Apr; 28(4):387-99. PubMed ID: 7738048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational modeling of non-Newtonian blood flow through stenosed arteries in the presence of magnetic field.
    Alshare A; Tashtoush B; El-Khalil HH
    J Biomech Eng; 2013 Nov; 135(11):114503. PubMed ID: 24061603
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mathematical model for blood flow through a bifurcated artery using couple stress fluid.
    Srinivasacharya D; Madhava Rao G
    Math Biosci; 2016 Aug; 278():37-47. PubMed ID: 27235925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery: Biomedical drug delivery simulation.
    Tripathi J; Vasu B; Bég OA; Gorla RSR
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1175-1196. PubMed ID: 34154464
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.
    Tazraei P; Riasi A; Takabi B
    Math Biosci; 2015 Jun; 264():119-27. PubMed ID: 25865933
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.